

TABLE	OF	

CONTENTS

Filters for Black-and-White Photography
Filters for Photomechanical Work
Filters for Color Photography
Exposing KODAK Color Films
Color Compensating Filters
Color Printing Filters
Three-Color Separation
Three-Filter Densitometry of Color Films and Papers
Color-Temperature Correction
Color-Temperature Values
Standards of Luminous Intensity
Practical Sources of Illumination
Light Balancing Filters
Complementary Filters
WRATTEN Photometric Filters
Filters for Use with Mercury-Vapor Lamps
Filters for Microscopy
WRATTEN Visual M Filters
Narrow-Band Filters
Narrow-Band Viewing Filter No. 90
Neutral Density Filters and Wedges
Sizes of Neutral Density Wedges
Sensitizing Classes and Types
Multiplying Factors of Filters
Tables of Filter Factors for KODAK Films and Plates
Filter Data
Filter Description and Uses
Spectrophotometric Absorption Curves
Colorimetric Specifications
Filter Stability
Thickness of WRATTEN Filters
Curves and Transmittance Data
Chromaticity Diagrams
Color Compensating Filters

Infrared Absorption Curves

Density-Transmittance Table

Forms and Types of Filters Ordering Filters

Care of Filters

© Eastman Kodak Company, 1965 (Also 1962)

Page 2

3

45

5

5

5

5

6

6

7

7

7

7

7

10

10

10

12

13

13

14 14

14

15

.... 16

16

.... 17

.... 18

.... 18

.... 20

.... 21

.... 22

.... 23

.... 24

.... 60

.... 64

Color Photography

Photometry

Microscopy

Neutral Density Filters

Filter Factors

Filter List

Spectrophotometric Absorption Curves

Density-Transmittance Table

KODAK WRATTEN FILTERS FOR SCIENTIFIC & TECHNICAL USE

This new edition, the twenty-second, has small changes in transmittance data for many filters. These changes represent slight but unavoidable differences in presumably identical batches of dye. In some cases, they represent reformulations.

Some new filters have been added: KODAK WRATTEN Filters Nos. 47A, 80A, 80D, 87A, and 87B. Nos. 80B and 80C are reformulated.

EASTMAN KODAK COMPANY

TWENTY-SECOND EDITION

 This punching fits the Kodak Photographic Notebook.
 See your Kodak dealer.

Kodak Wratten Filters for Scientific and Technical Use

Since 1909, KODAK WRATTEN Filters have been recognized as occupying a unique position for photographic, technical, and scientific work. This has been due in part to the wide range of filters available, to their exact adjustment for the purpose for which they were designed, and to the great care exercised in their preparation. The standardization of each filter for color and spectral transmission has been carefully worked out and the standards adopted have been maintained rigidly.

This booklet is written primarily for the technical and scientific laboratory worker whose use of filters requires extensive spectrophotometric data. Some information of a more general photographic nature is included. A more complete treatment of the photographic use of filters is contained in the Data Book, *Kodak Filters and Pola-Screens*. (For further information on this and other KODAK publications, see KODAK Book List 2, *Advanced and Professional Photography* and Book List 3, *Specialized Photography*, available on request from the Sales Service Division, Eastman Kodak Company, Rochester, N. Y. 14650.)

Note: The filter recommendations given in this book are not intended to suggest that other types of filters having proper transmission characteristics cannot be used.

FORMS AND TYPES OF FILTERS

Most KODAK WRATTEN Filters are prepared from organic dyes, of which a large number have been investigated in the Kodak Research Laboratories. The dyes are obtained from a number of sources, and many have been specially synthesized.

The filters are made by mixing the dyes in gelatin, and coating the proper amount on prepared glass. After the coating is dry, the gelatin film filter is stripped from the glass. Each filter is standardized for spectral transmittance and for total transmittance by special instruments which apply an optical form of limit gauge to these characteristics. *Notice:* Dyes used in filters, like other dyes, may, in time, change. Filters will therefore not be replaced or otherwise warranted against change in transmittance.

With few exceptions, KODAK filters are supplied either as lacquered gelatin film, or as gelatin film cemented between pieces of "B" glass. The exceptions are: WRATTEN filters No. 18A and 39 which are supplied only as glass filters containing no gelatin film; WRATTEN filters No. 76, 77, and 77A, compound filters composed of combinations of gelatin film filters, or gelatin film filters, and glass filters. Filters in "B" glass are cemented between sheets

of plane-parallel glass, which is surfaced in quantities and is of sufficient accuracy for general photographic work and for most scientific purposes, such as spectrography or photomicrography. This glass is not of sufficiently good surface for use in photography with large-aperture lenses of long focal length, such as those used on process cameras, in map-making equipment, and on large copying cameras. Unmounted gelatin filters should be used for this purpose.

There are over one hundred varieties of KODAK WRATTEN Filters. They include groups of filters suitable for experimental work in scientific photography, contrast photography of colored objects, color photography and color cinematography, photomicrography, graphic arts, spectroscopy, and photometry. Recommended groups are given on pages 5 to 16. Other filters can be selected from the list for a variety of scientific purposes.

Pages 24 through 69 of this book present the following data on each filter: * (1) a spectrophotometric absorption curve; (2) a table of percentage transmittance at wavelengths from 400 to 700 m μ in intervals of 10 m μ ; (3) dominant wavelength (Illuminants "A" and "C"); (4) percentage of excitation purity (Illuminants "A" and "C"); (5) percentage luminous transmittance (Illuminants "A" and "C"); and (6) colorimetric coordinates x_A, y_A, x_C , and y_C .

The Eastman Kodak Company welcomes opportunities to suggest filters for any special purpose and to put the knowledge and resources of its Research Laboratories, as far as possible, at the service of investigators.

ORDERING FILTERS

When filters are ordered, the number of the filter, its shape, and its size should be given, with a statement as to whether it is wanted in the form of gelatin film or cemented in "B" glass.

Most WRATTEN gelatin filters are stocked in 2- and 3-inch squares, but it is not possible to stock them in all listed sizes. Special sizes of gelatin filters are made up on order. Stocks of 2- and 3-inch square filters cemented in "B" glass are maintained only in filters usually used for general photographic work. Therefore, most other sizes of filters cemented in "B" glass, except the series sizes, are special-order items and require several weeks for delivery.

For size and price information on filters and photographic filter accessories, write to the Special Sensitized Products Sales, Eastman Kodak Company, Rochester, N. Y. 14650.

^{*}Data at 700 to 1,100 m μ (infrared) for No. 87, 87A, 87B, 87C, 88A, and 89B are on pages 70 and 71. Additional infrared transmittance data (700 to 850 m μ) is given for those filters which have a significant amount of absorption in this range in the Spectrophotometric Absorption Curves on pages 72 through 75.

THE CARE OF FILTERS

Although the gelatin film filter is protected by a thin lacquer coating, the filter should be handled only by the edges or at the extreme corners.

Gelatin film filters should be kept flat and dry. Continued stress can deform them permanently, and moisture tends to cloud them. Storage in clean paper between the leaves of a book, immediately after use, is safe and convenient.

If it is necessary to cut the filter, it should be placed between two pieces of clean, fairly stiff paper and cut with a pair of sharp scissors.

Cemented filters should be treated with care equal to that accorded to lenses. They should be kept in their cases, and on no account allowed to get damp or dirty. Cemented filters are lacquered on the edges to resist the entry of moisture. However, a filter should never be washed with water under any circumstances. If water should come in contact with the gelatin at the edges of the filter, it will cause it to swell and separate the glasses so that air can enter between the gelatin and the glass. Even if the swelling does not cause air to enter in this manner, the filter might be strained and its optical surface changed.

Filters are cleaned when packed for distribution. With reasonable care, they can be used indefinitely. If, for any reason, a cemented filter becomes so dirty that it cannot be cleaned by simply rubbing after breathing on it, a piece of soft cloth or KODAK Lens Cleaning Paper moistened with KODAK Lens Cleaner (which should not be permitted to touch the cemented edges of the filter) can be employed for the purpose of cleaning the glass surfaces. Before attempting to clean a filter, it is well to make sure that the surfaces of the glass and the tissue or cloth are free from grit which might scratch the glass.

It is difficult to classify the stability of either gelatin film filters or those cemented in glass when subjected to high temperatures. We recommend that WRATTEN filters should not be subjected to temperatures higher than 120 to 130 F, and then for only relatively short periods. The factors of time, temperature, and humidity are quite closely related in their effect on filter stability. Since individual dyes respond quite differently when exposed under identical conditions, some WRATTEN filters undoubtedly will retain their absorption characteristics at temperatures above 130 F, but others will not. For this reason, precautionary measures should be taken, if possible, to avoid subjecting WRATTEN filters to high temperatures. See statement about "Filter Stability" on page 22.

When used under tropical conditions, filters should be treated with utmost care. They should be cleaned frequently, as described above, to prevent damage from fungus. Dry, cool storage conditions are desirable; a desiccated, hermetically sealed container is usually satisfactory.

FILTERS FOR BLACK-AND-WHITE PHOTOGRAPHY

No. 6, 8, 11, 13, 15, 25, 29, 47B, 58. For description and uses, see page 18.

Filters for Photomechanical Work

WRATTEN gelatin filters, especially selected for uniform thickness, are available for critical photomechanical work. These filters are designated "KODAK WRATTEN Photomechanical Filters" and are particularly useful in cases where partial exposures are to be made through each of several filters. The KODAK WRATTEN Photomechanical Filters are PM8, PM23A, PM25, PM29, PM33, PM47, PM47B, PM58, PM61, PM85B, and PM96.

FILTERS FOR COLOR PHOTOGRAPHY Filters for Exposing KODAK Color Films

No. 1A, 80A, 80B, 80C, 80D, 85, 85B, 85C, 85N3, 85N6. For description and uses, see page 18.

Peak Density	Yellow (Absorbs Blue)	Exposure Increase in Stops*	Magenta (Absorbs Green)	Exposure Increase in Stops*	Cyan (Absorbs <mark>R</mark> ed)	Exposure Increase in Stops*
.025	CC 025Y	_	CC 025M	_	CC 025C	_
.05	CC 05Y	_	CC 05M	1/3	CC 05C	1/3
.10	CC 10Y	1/3	CC 10M	1/3	CC 10C	1/3
.20	CC 20Y	1/3	CC 20M	1/3	CC 20C	1/3
.30	CC 30Y	1/3	CC 30M	2/3	CC 30C	2/3
.40	CC 40Y	1/3	CC 40M	2/3	CC 40C	2/3
.50	CC 50Y	2/3	CC 50M	2/3	CC 50C	1
Peak Density	Red (Absorbs Blue and Green)	Exposure Increase in Stops*	Green (Absorbs Blue and Red)	Exposure Increase in Stops*	Blue (Absorbs Red and Green)	Exposure Increase in Stops*
.025	CC 025R	-	_			_
.05	CC 05R	1/3	CC 05G	1/3	CC 05B	1/3
.10	CC 10R	1/3	CC 10G	1/3	CC 10B	1/3
.20	CC 20R	1/3	CC 20G	1/3	CC 20B	2/3
.30	CC 30R	2/3	CC 30G	2/3	CC 30B	2/3
.40	CC 40R	2/3	CC 40G	2/3	CC 40B	1
.50	CC 50R	1	CC 50G	1	CC 50B	11/3
.50 *These value	CC 50R	imate. For c	CC 50G	1 hey should be	CC 50B	1 ¹ / ₃ practical

KODAK Color Compensating Filters

KODAK CC Filters can be used singly, or in combination, to introduce almost any desired correction in various phases of color photography. If several filters are used together over a lens, definition may be affected adversely by (1) scattering of the light, (2) combined errors of several glass surfaces. It is best to use the minimum number of filters which will produce the desired correction.

The term "peak density" in the table on page 5 is the density measured at the wavelength of maximum absorption. The density-values do not include the density of the gelatin in which the filter dye is coated or the density of the glass in which a filter may be mounted.

Color Printing Filters

The acetate-film KODAK Color Printing (CP) Filters are recommended for use in enlargers which provide a convenient means for placing the filter pack between the light source and the negative. These filters are less expensive than gelatin-film filters, but they cannot be used in the path of image-forming light without affecting print definition. The CP filters are supplied in cyan, magenta, red, and yellow, and in density values of 0.05, 0.10, 0.20, and 0.40. There is also a No. CP2B to absorb ultraviolet radiation. All are available in 5-, 6-, 8-, and 12-inch squares and in an 8 by 10-inch size.

Cyan	Magenta	Red	Yellow
CP05C	CP05M	CP05R	CP05Y
CP10C	CP10M	CP10R	CP10Y
CP20C	CP20M	CP20R	CP20Y
CP40C	CP40M	CP40R	CP40Y

CP2B (Equivalent to KODAK WRATTEN No. 2B)

The CP filters are not supplied in green or blue, because the number of filters above the negative is not important. Hence, these colors can be obtained by using the proper combinations of cyan, magenta, and yellow filters.

Filters for Three-Color Separation

Direct Color Separation: No. 25 (Red), No. 58 (Green), No. 47B (Blue) Color Transparencies: No. 29 (Red), No. 61 (Green), No. 47B (Blue) When used for projected color-separation work, filters should be used in the gelatin form, not cemented. Small variations in thickness or parallelism of cemented filters may throw the projected image out of register.

For details, write to the Special Sensitized Products Sales Division, Eastman Kodak Company, Rochester, N. Y. 14650.

Filters for additive projection and other special purposes are described in the list on page 18.

Three-Filter Densitometry of Color Films and Papers

No. 92 (Red), No. 93 (Green), No. 94 (Blue)

Since all three filters transmit in the infrared, a physical densitometer using these filters should be equipped with an infrared rejecting filter, such as a dichroic interference filter which transmits in the visible and reflects much of the near infrared. Such a filter will restrict measurements to the red, green, and blue regions.

COLOR-TEMPERATURE CORRECTION

Color films are usually designed for use with a specific type of illuminant. Ideally, the specific illuminant should be used; but, when this is not practical, a conversion filter can be placed over the camera lens to adjust the color quality of the illuminant to that for which the film was designed.

The color quality of some illuminants can be expressed in terms of "color temperature"—a measure which defines the color of a light source by reference to the visual appearance of the light radiated by an ideal radiator, that is, a black body heated to incandescence. When the color of the illuminant is the same, or very nearly the same, as that of the ideal radiator at a given temperature, this temperature is defined as the color temperature and is expressed in degrees Kelvin (K).

The following table shows the approximate color temperatures of various standard and practical light sources.

Standards of Luminous Intensity and Their Color Temperatures

Source	Color Temperature (in K)
Standard British candle	
Hefner	
Harcourt pentane	1920
Acetylene	
Incandescent carbon (4 watts/candle)	
Incandescent tungsten (1.25 watts/candle)	
Freezing point of platinum	2042

Practical Sources of Illumination and Their Color Temperatures

Source	Color $Temperature$ (in K)
Sunlight (mean noon)	
Skylight	12000 to 18000
Photographic Daylight*	5500
Crater of carbon arc (ordinary hard-cored)	4000
White-flame carbon arc	5000
High-intensity carbon arc (sun arc)	5500
Clear foil-filled flash	
500-watt (photoflood) approx 34.0 lumens/watt	
500-watt (3200 K photographic) approx 27.0 lumens/wa	tt
200-watt (general service) approx 20.0 lumens/watt	
100-watt (general service) approx 17.5 lumens/watt	
75-watt (general service) approx 15.4 lumens/watt	
40-watt (general service) approx 11.8 lumens/watt	
*Condition of daylight which best represents that encountered in typical photograp	hic situations.

Each color temperature can have assigned to it a "mired" (*micro-recip*rocal *degrees*) value. Mired value = $\frac{1,000,000}{\text{color temperature in degrees Kelvin}}$.

KODAK WRATTEN Photometric Filters and KODAK Light Balancing Filters have the power to shift the color temperature, and hence the mired value, of any one light source by a definite amount. Each filter can therefore be

given a "mired shift value," represented by the expression $\left[\frac{10^6}{T_2} - \frac{10^6}{T_1}\right]$

when T_1 represents the color temperature of the original light source, and T_2 the color temperature of the light through the filter. This value will be either positive or negative, depending on the color of the filter. Yellowish filters, which lower the color temperature and therefore increase the mired value, will have a positive mired shift value; those in the bluish series, which raise the color temperature and therefore reduce the mired value, will have a negative mired shift value.

The nomograph on page 9 is designed to simplify the problem of selecting the proper conversion filter. The original light source, T_1 , is listed in the left column and covers the practical range of color temperatures from 2,000 to 10,000 K. The right-hand column lists the color temperature of the light through the filter—that is, the converted source, T_2 . The center column shows the scale of mired shift values. To find the mired shift value and consequently the filter required for a particular conversion, it is only necessary to place a straightedge on the points corresponding to the color temperature of the available source, T_1 , and the color temperature of the desired source, T_2 , respectively. The straightedge crosses the center column and indicates the mired shift value of the required filter. It is clear that the zero point on this column indicates that no filter is required and that mired shift values above the zero point (+) require yellowish filters and those below the zero point (-) require bluish filters.

The mired shift values of WRATTEN filters which may be used for colortemperature conversion are listed in the following tables: page 10, KODAK Light Balancing Filters, and page 11, KODAK WRATTEN Photometric Filters.

Filters can be combined, the desired combination being calculated by adding the mired shift values of the filters, with due regard to the sign. If more than one filter is used, it should be remembered that the reflection loss due to the multiple surfaces may become considerable. This, however, can be partly eliminated by cementing the filters together in pairs.

It should be noted that the color-temperature specification for the color quality of a light source is adequate only for those sources whose spectralradiation characteristics are not markedly different from those of the ideal thermal radiator.

MIRED NOMOGRAPH FOR LIGHT SOURCE CONVERSION

KODAK Light Balancing Filters

These filters enable the photographer to adjust the color quality of the illumination in order to obtain cooler (bluer) or warmer (yellower) color rendering.

Filter Color	WRATTEN Number	Exposure Increase in Stops*	To obtain 3200 K from:	To obtain 3400 K from:	Mired Shift Value
	82C + 82C	11/3	2490 K	2610 K	-89
	82C + 82B	11/3	2570 K	2700 K	-77
	82C + 82A	1	2650 K	2780 K	-62
Bluish	82C + 82	1	2720 K	2870 K	-55
	82C	2/3	2800 K	2950 K	-45
	82B	2/3	2900 K	3060 K	-32
	82A	1/3	3000 K	3180 K	-18
	82	1/3	3100 K	3290 K	-10
	No Filter Necessary		3200 K	3400 K	—
	81	1/3	3300 K	3510 K	10
	81A	1/3	3400 K	3630 K	18
Yellowish	81B	1/3	3500 K	3740 K	27
	81C	1/3	3600 K	3850 K	35
	81D	2/3	3700 K	3970 K	42
	81EF	2/3	3850 K	4140 K	53
	80A	21/3	3200 to	5500	-131
Bluish	80B	2	3400 to	5500	-112
- × × .	800	1	3800 to	5500	-81
	80D	1	4200 to	5500	-56
	85C	1/3	5500 to	3800	81
Yellowish	85	2/3	5500 to	3400	112
1	85B	2/3	5500 to	3200	131

*These values are approximate. For critical work, they should be checked by practical test, especially if more than one filter is used.

COMPLEMENTARY FILTERS

No.	44A	1													Minus Red	
No.	32														Minus Gree	n
No.	12								•		•	•	•		Minus Blue	

WRATTEN PHOTOMETRIC FILTERS

When light sources of different colors are compared on the visual photometer, the color difference introduces difficulty in making an accurate balance. This difficulty can be eliminated, or at least lessened considerably,

THE NO. 86 SERIES THE NO. 78 SERIES Mired Mired Filter No. Description Shift Filter No. Description Shift Value Value 242 78 2360 K to 5500 K -24286 5500 K to 2360 K 3200 K to 2360 K 111 **78AA** 2360 K to 4400 K -19686A 2800 K to 2360 K 2360 K to 3200 K -11186B 67 78A 78B 2360 K to 2800 K -6786C 2500 K to 2360 K 24 78C 2360 K to 2500 K -24Dummy For Setting 0° Note: See page 7 for color temperatures of practical light sources.

if a selectively absorbing filter is placed on one side of the photometer head so that the difference in color between the two parts of the photometric field is eliminated, or reduced to such an extent that it no longer interferes with the precise judgment of brightness equality.

The transmittance of the selectively absorbing filter for light of the spectral quality which is incident upon it in the photometer must, of course, be determined. This calibration can be made by taking a sufficiently large number of observations to obtain the desired precision.

These filters are designed primarily for visual use with a photometer to reduce color differences between illuminants operating at different color temperatures. The No. 78 series consists of bluish filters designed, in general, to be placed on the standard-lamp side of the photometer or illuminometer to raise the color temperature from the first to the second value shown. The No. 86 series is yellowish and is designed to be placed on the test or comparison side of the photometric instrument to lower the color temperature from the first to the second value.

WRATTEN photometric filters are designed for the elimination of these disturbing color differences in all types of photometric work. In presentday photometric practice, the standard of luminous intensity is almost invariably an electric incandescent lamp standardized for candle power. In order that this standard will have a satisfactory, long life, it is necessary that it be operated at a relatively low filament temperature. This means that the light emitted by such standards is usually much "yellower" than the illumination which is to be measured, which may come from commercial tungsten incandescent lamps operating at much higher temperatures, arc lamps of various kinds, or from natural sources, such as the sun or sky.

In the table above, the color difference, which can be compensated for by the various photometric filters, is shown in terms of color-temperature differences. Since some standard lamps operate at a color temperature of approximately 2360 K, this value has been taken as the basis in showing the color difference for which each member of the photometric group will compensate.

It should be emphasized that the photometric filters are designed primarily for visual use to reduce the color differences between illuminants operating at different color temperatures. As a matter of fact, color temperature is a purely psychophysical term and is meaningless in any other than a visual sense.

Note: These filters are subject to the limitations of commercial production, even though the tolerances have been reduced to the minimum practical values; if they are to be used under circumstances where high precision is required, they should be calibrated individually.

WRATTEN Filter No.	Principal Lines Transmitted	WRATTEN Filter No.	Principal Lines Transmitted				
22	577 and 578 m _µ	77*	546 m _μ (70%)				
50	436 m _µ	77A*	546 m _µ (55%)				
74	546 m _µ	18A	310 to 390 m _µ				

FILTERS FOR USE WITH MERCURY-VAPOR LAMPS

*Filters No. 77 and 77A are available only as cemented glass filters.

The great intensity and wide separation of the mercury-vapor-lamp lines make the lamp well suited to use as a monochromatic light source. The No. 22 transmits the yellow lines, 577 and 578 m μ , and all longer wavelengths; the No. 50 transmits the 436-m μ violet line and, to a lesser extent, the 408-, 405-, and 398-m μ lines. On account of its great intensity, the line of wavelength 436 m μ completely overpowers the other lines. The No. 74 transmits about 10 percent of the green 546-m μ line and 0.2 percent of the yellow lines, 577 and 578 m μ .

For the transmission of the green line of the mercury-vapor lamp, two cemented filters, No. 77 and No. 77A, are available. No. 77 has an absorption band which almost completely absorbs the yellow lines. It transmits 74 percent of the green line and about 0.5 percent of the yellow line, an amount negligible for most purposes. Filter No. 77A transmits 68 percent of the green line and a negligible percent of the yellow lines. Where the red lines of the quartz lamp are objectionable and must be eliminated, Filter No. 58 should be superimposed on either the No. 77 or No. 77A.

For the isolation of the mercury line at 365 m μ , in the ultraviolet, filter No. 18A is suggested. This filter transmits approximately 60 percent of the 365-m μ line, and, when it is used with a light source giving a continuous spectrum, it affords a means of obtaining ultraviolet radiation of a fairly narrow band having its maximum at 360 m μ .

FILTERS FOR MICROSCOPY

These filters can be used singly or in pairs. By using them in pairs, the spectrum can be divided into approximately monochromatic portions.

Number	Visual Color	Spectral Transmission
25	Red	From 590 m $_{\mu}$ into the infrared.
58	Green	From 480 m $_{\mu}$ to 620 m $_{\mu}$.
47	Blue	From 370 m $_{\mu}$ to 510 m $_{\mu}$.
35	Purple	From 320 m $_{\mu}$ to 470 m $_{\mu}$ and from 650 m $_{\mu}$ into infrared.
22	Yellow-Orange	From 550 m $_{\mu}$ into the infrared.
29	Deep Red	From 610 m $_{\mu}$ into the infrared.
15	Deep Yellow	From 510 m $_{\mu}$ into the infrared.
45	Blue	From 430 m $_{\mu}$ to 540 m $_{\mu}$.
11	Yellowish-Green	For correct tone reproduction with tungsten light.

WRATTEN Visual M Filters

Number	Color	Use
78AA	Blue	A photometric filter which can be used to convert the color quality of light from incandescent tungsten lamps of the common type to that which is approximately visually equivalent to daylight. Often employed for viewing colored specimens with their commonly accepted standard daylight appearance.
38A	Blue	A filter for increasing the apparent contrast in faintly stained yel- low or orange preparations. Helps in the resolution of fine detail.
45A	Blue- Green	Especially useful when the highest resolving power visually possible is required, as in the study of diatom structure. It has no red transmission and its dominant wavelength range is 470-480 m $_{\mu}$.
66	Light Green	A contrast filter for use with pink- and red-stained preparations. Preferred by some workers for general use in place of No. 78AA.
58	Green	A contrast filter for use with faintly stained pink or red prepara- tions.
15	Deep Yellow	For increasing the contrast in blue preparations and for helping in the observation of datail in insect mounts by reducing the con-
22	Yellow- Orange	trast between the preparation and the background.
25	Red	Contrast filter for use with preparations stained with Methylene Blue, Methyl Green, etc.
96	Neutral	A filter for reducing the intensity of the illumination. The density supplied (1.0) transmits ten percent of the incident light.

NARROW-BAND FILTERS

No. 70, 72B, 73, 74, 75, 76.

These filters isolate relatively narrow bands of the spectrum. With the exception of WRATTEN Filter No. 76, all are available as gelatin film filters or as cemented filters in "B" glass. The No. 76 filter is a compound filter and is available as a cemented-glass filter only.

Narrow-Band Viewing Filter No. 90

This filter, No. 90, of a pure yellow color, transmits a narrow region of the spectrum. Although it is possible to distinguish between a red and a green viewed through this filter, the difference between the colors is so dulled that they no longer materially affect judgment as to their relative luminosity.

NEUTRAL DENSITY FILTERS AND WEDGES

Neutral density filters and wedges are of use in many branches of optical work since they permit the reduction of light intensity in a known and definite manner. Those now made by the Eastman Kodak Company are for the visual region. The neutral density filters and wedges are made to have certain definite values of optical density which are measured as diffuse density upon approved types of photometers.

Experience has shown that the transmission of a neutral density filter may vary as much as 3 percent, depending on the optical system with which it is used. These variations are caused by interreflections and by scattering of the light. The KODAK WRATTEN Neutral Density Filter, No. 96, is supplied within an accuracy of \pm 5 percent of the stated diffuse opticaldensity value for sizes less than 3 inches square (\pm 10 percent on 3-inch square or larger sizes). It is recommended for special work that such filters be calibrated by direct measurement under the conditions of use.

The Neutral Density Filter, No. 96, is supplied as gelatin film in thirteen standard densities and as a No. 0 plain gelatin filter (see table, page 15). It will be furnished in "B" glass only, on special order.

Special calibrated filters can be furnished on order. Requests for quotations on such filters should be accompanied by complete statements of size and precision required.

A neutral density filter (solid glass) for camera use is supplied in sizes for use with the KODAK Combination Lens Attachments. It is termed KODAK ND-3. The density of this filter is 0.90. The ND-3 filter reduces exposure by three lens stops.

Wedges are listed with or without calibration; calibrated wedges can be supplied with a balancing wedge which should be ordered at the same

Density	Percent Transmittance	Density	Percent Transmittance		
Dummy*	90.0	0.70	20.0		
0.10	80.0	0.80	16.0		
0.20	63.0	0.90	13.0		
0.30	50.0	1.00	10.0		
0.40	40.0	2.00	1.0		
0.50	32.0	3.00	0.10		
0.60	25.0	4.00	0.010		

time as the wedge. Balancing wedges, which can be supplied to fit any wedge, are short wedges designed to give a uniform intensity across the field of view in any instrument in which the working wedge is employed. The balancing wedge is fixed with regard to the instrument. This wedge is identical with the lightest portion of the working wedge, and its wedging direction is opposite to that of the working wedge.

All wedges are supplied within an accuracy of ± 5 percent of the stated diffuse optical density at the dense end of the wedge. Calibrated wedges are supplied with the densities calibrated within an accuracy of ± 2 percent.

All wedges are larger than the size given, which is that of the darkened area. A margin of 2.54 cm of clear glass is left at the thick end of all wedges, 2.00 cm of clear glass at the thin end of large wedges, and 1 cm at the thin end of small wedges. Up to 2 mm wide clear area is maintained along both sides of standard wedges to insure edge seal and lengthen the life of wedges.

The absorption of filters and wedges may be defined in terms of their transmittance or of their density. The density is the logarithm of the reciprocal of the transmittance and may be expressed as follows:

Density = $\log_{10} \frac{1}{\text{transmittance}}$.

Sizes of Tinted Area of Neutral Density Wedges

 $10 \ge 1\frac{1}{2} \text{ cm}$

 $15 \ge 2 \text{ cm}$

 $20 \times 3 \text{ cm}$

Special Neutral Density Wedges can be made to order. Inquiries should be directed to the Special Sensitized Products Sales, Eastman Kodak Company, Rochester, N. Y. 14650.

SENSITIZING CLASSES AND TYPES

The negative materials supplied by the Eastman Kodak Company may be divided into classes and types for purposes of description and for convenience in the assignment of filter factors. Aside from certain special sensitizings, such as the infrared and those for scientific purposes, there are three general classes as follows:

Non-Color-Sensitized materials possess only the ultraviolet and blueviolet sensitivity inherent in any silver-halide emulsion.

Orthochromatic materials possess sensitivity to green, in addition to the ultraviolet and blue-violet.

Panchromatic materials are sensitive to red light as well as to the above colors. They thus respond to all visible colors and to ultraviolet. Panchromatic materials differ somewhat with respect to their relative sensitivities to blue, green, and red light.

The materials coming under these classes and types are described in other KODAK publications, such as the Data Book Kodak Films in Rolls for Blackand-White Photography. A wide range of plates sensitive to special regions of the spectrum is available for spectroscopic and astronomical work. Particulars are given in the booklets Kodak Plates and Films for Science and Industry and Kodak Materials for Emission Spectrography.

MULTIPLYING FACTORS OF FILTERS

Since a filter absorbs part of the light, its use in photography involves an increase in exposure corresponding to the proportion of effective light absorbed. The number of times by which the exposure must be increased for a given filter with a given material is called the multiplying factor of the filter or the filter factor, and this factor will depend both upon the photographic material and upon the light source used. A red filter, for instance, may require an increase in the exposure of thousands of times with a material having very little sensitivity to red, while with a very red-sensitive material the increase in exposure may be only three or four times. The same considerations apply to the use of different light sources. It is meaningless, therefore, to refer to filters as "two times" or "four times" filters.

The values in the tables and in the direction sheet included in each box of films or plates should be taken as approximate guides only. The factors apply strictly to the particular lighting conditions used in determining them in the laboratory. In practice, where the quality of light may be different, a slightly different factor may apply.

To determine the filter factor that applies to actual working conditions, choose a subject having a neutral-gray area, or place a KODAK Neutral Test Card or a photographic gray scale in the scene. In photomicrography the illuminated field without a slide in place can be used. Make one exposure without a filter. Then, with the filter, make a series of exposures ranging by half-stops through a 2- to 4-stop range of greater exposure, depending on the filter. Match the density of the unfiltered shot to the comparable density of one of the filtered series either visually or with a densitometer. The filter factor can be figured from the difference in exposure between the two.

	FILTER GENERAL CLASSES OF	FACTOR Kodak	S FOR FILMS	AND PL	ATES*		
KODAK WRATTEN	Color of	Non-(Sensi	Color- tized	Ort chror	ho- natic	Pa chroi	an- matic
Number	riter	Sunl't	Tung.	Sunl't	Tung.	Sunl't	Tung.
3	Light Yellow	4	3	2	1.5	1.5	
4	Yellow	8	5	2	1.5	1.5	1.5
6	K1—Light Yellow	4	3	2	1.5	1.5	1.5
8	K2—Yellow	12	10	2.5	2	2	1.5
9	K3—Deep Yellow	20	16	2.5	2	2	1.5
11	X1—Yellowish-Green				·	4	3
12	Yellow			3	2.5	2	1.5
13	X2—Dark Yellowish-Green				·	5	4
15	G—Deep Yellow			5	3	3	2
23A	Light Red					6	3
50	Very Dark Blue					20	40
25	A—Red					8	6
58	Green			8	5	8	8
47B	Blue			6	8	8	16
29	F—Deep Red					25	12
61	Green					12	12
47B	Blue			6	8	8	16
Kodak Pola- Screen	Gray	For darkened sky effects, use a factor of 2.5 (in addition to the exposure increase required for side lighting), or increase the exposure four times as compared to the exposure for the same subject with front lighting and without a KODAK POLA-SCREEN.					

*The filter factors for a specific film or plate may vary somewhat from this listing. See individual product instructions.

DESCRIPTIONS AND USES OF FILTERS

	Number		Description and Use
COLORLESS	0	For compens	ating thickness of other gelatin filters in optical
	1A	Kodak Skyligi color photo	nt Filter—Reduces excess bluishness in outdoor ographs in open shade under a clear, blue sky
YELLOWS	2A	Absorbs radia	int energy below 405 m μ
	2B	Absorbs ultra	violet below 390 mu
	2C	Absorbs ultra	violet below 385mu
	2E	Absorbs radia	nt energy below 415 mu
	3	Light yellow (Aero No. 1)
	3N5	No. 3 plus 0.5	neutral density
	4	Yellow—Appr for outdoor	oximate correction on panchromatic materials scenes, including sky
	6	K1—Light ye	llow—Partial correction outdoors
	8	K2—Yellow— matic mate foliage ren	-Full correction outdoors on Type B panchro- erials. Widely used for proper sky, cloud, and dering
	8N5	No. 8 plus 0.5	neutral density
	9	K3—Deep ye (with black	llow. Moderate contrast in outdoor photography -and-white films)
	11	X1—Yellowis panchroma Type C pa	h-green. Correction for tungsten light on Type B tic materials; also for daylight correction with nchromatic materials in making outdoor por-
	12	Minus blue H	aze cutting in aerial photography
	13	X2—Dark yel	lowish-green. Correction for Type C panchro-
	15	G—Deep yell Contrast co	ow. Overcorrection in landscape photography. ontrol in copying and in aerial infrared photog-
	16	Blue absorptio	on
	18A	Transmits ult	aviolet and infrared only (glass)
ORANGES AND REDS	21 22	Blue and blue Yellow-orange	-green absorption . For increasing contrast in blue preparations
	23A 24	Light red. Two Red for two-co	-color projection—contrast effects olor photography (daylight or tungsten). White-
	25	flame-arc t A—Tricolor ro	ricolor projection ed for direct color separation. Contrast effects cial photography and in outdoor scenes. Two
		color gene	ral viewing. Aerial infrared photography and
	26	Stereo red	B
	29	F-Deep red	. Red color separation from transparencies.
	25	Strong con tricolor pro	trast effects. Copying blueprints. Tungsten
	92	Red. For densi	tometric measurement of color films and papers
MAGENTAS AND VIOLETS	30 31	Green absorpt	tion
	32	Minus green	
	33	Strong green	absorption
	34	Violet	
	34A	Blue separation	on .
	35	Contrast in m	icroscopy
	36	Dark violet	

	Numl	ber Description and Use
BLUES AND BLUE-GREENS	38 38A 39	Red absorption Red absorption. Increasing contrast in visual microscopy Contrast control in printing motion-picture duplicates (glass)
	40	Green for two-color photography (tungsten)
	44	Minus red—Two-color general viewing
	44A	Minus red
	45	Contrast in microscopy
	45A	Blue-green. Highest resolving power in visual microscopy
	46 47	Blue projection (experimental) C5—Tricolor blue for direct color separation and from Kodak EKTACOLOR Film for Dye Transfer. Contrast effects in com- mercial photography. Tungsten and white-flame-arc tri- color projection
	47A 47B	Light blue. Used for medical photography Tricolor blue for direct color separation, separation from transparencies and from KODAK EKTACOLOR Film for graphic arts
	48	Green and red absorption
	48A	Green and red absorption
	49	C4—Dark blue
	49B	Dark blue
	50	Very dark blue. Mercury violet
	94	Blue. For densitometric measurement of color films and papers
	90	No. 47B plus a 2B filter
GREENS	52	Light green
	53	Medium green
	54	Very dark green
	55	Stereo green
	50	Crean for two color photography (daylight)
	574	Light green
	58	B—Tricolor green for direct color separation. Contrast ef- fects in commercial photography and microscopy
	59	Green for tricolor projection (white-flame-arc)
	59A	Very light green
	60 61	Green for two-color photography (tungsten) N—Green color separation from transparencies and KODAK Ektacolog Film Tricolor projection (tungsten)
	64	Red absorption (light)
	65	Red absorption
	65A	Red absorption
	66	Light green. Contrast effects in microscopy and medical pho- tography
	93	Green. For densitometric measurement of color films and papers
	99	Green. For use with KODAK EKTACOLOR Paper—equivalent to a No. 61 plus a No. 16 filter
NARROW-BAND	70	Dark red. For use with KODAK EKTACOLOR Paper and color sep- aration from KODAK EKTACOLOR Film (with tungsten)
	72B	Dark orange-yellow
	73	Dark yellow-green
	74	Dark green. Mercury green
		Dark blue green
	75	Dark blue-green
	75	Dark blue-green Dark violet (compound filter)

	Num	ber Description and Use
PHOTOMETRICS	78	Bluish. Photometric filter (visual)
	78AA	Bluish. Photometric filter (visual)
	78A	Bluish. Photometric filter (visual)
	78B	Bluish. Photometric filter (visual)
	78C	Bluish. Photometric filter (visual)
	86	Yellowish, Photometric filter (visual)
	86A	Yellowish. Photometric filter (visual)
	86B	Yellowish, Photometric filter (visual)
	86C	Yellowish. Photometric filter (visual)
LIGHT	80A	Blue. Кодак 3200 K filter for Кодак Daylight Type Color
BALANCING		Films
	80B	Blue. Корак Photoflood Filter for Корак Daylight Type Color Films
	80C	Blue. Кодак Photoflash Filter for Кодак Daylight Type Color
		Films and clear flashbulbs
	80D	Blue. KODAK Photoflash Filter for Daylight Type Color Films and AG-1 (clear) flashbulbs
	81	Yellowish. For warmer color rendering
	81A	Yellowish. For KODAK Type B Color Films with photoflood
	81B	Yellowish For warmer color rendering
	810	Yellowish. For KODAK Type A and Type B Color Films with clear flashbulbs
	81D	Yellowish
	81EF	Yellowish
	82	Bluish. For cooler color rendering
	82A	Bluish, For KODACHROME II Film, Type A, with 3200 K lamps
	82B	Bluish. For cooler color rendering
	820	Bluish. For cooler color rendering
	85	Orange, Kopak Davlight Filter for Kopak Type A Color Films
	85B	Orange, Kopak Davlight Filter for Kopak Type B Color Films
	85C	Light orange. KODAK Daylight Filter for KODAK Type F Color Films
	85N3	For daylight exposure of FASTMAN Color Negative Film at
	00110	relatively large apertures
	85N6	For daylight exposure of FASTMAN Color Negative Film at
	00.10	relatively large apertures
MISCELLANEOUS	79	Photographic sensitometry. Corrects 2360 K to 5500 K
	87	For infrared photography. Absorbs visual
	87A	Absorbs visual and near infrared, transmits infrared
	87B	Absorbs visual and near infrared, transmits infrared
	87C	Absorbs visual, transmits infrared
	88A	For infrared photography. Absorbs visual
	89B	For infrared photography
	90	Monochromatic Viewing Filter
	96	Neutral filters for controlling luminance
	97	Dichroic absorption
	102	Conversion filter for Barrier-layer photocell (to luminosity)
	106	Conversion filter for S-4 type photocell (to luminosity)

Spectrophotometric Absorption Curves

The absorption curves on pages 24 through 75 show density plotted against wavelength. Wavelengths are expressed in terms of millimicrons $(m\mu)$, one $m\mu$ being equal to 0.000001 millimeter. Density is the common logarithm of 1/transmittance. A density of 1 corresponds to a transmittance of

10 percent, a density of 2 to a transmittance of 1 percent, and a density of 3 to a transmittance of 0.1 percent. See table on pages 76 and 77.

The curve of Filter No. 58 on page 43 shows a density of a little less than 0.3 at wavelength 520 m μ . This indicates a transmittance of a little more than half the incident light. This is confirmed by the table of transmittances on the same page. The transmittance at 520 m μ is 52.5 percent. At wavelengths of 494 and 579 m μ , the curve shows a density of 1, indicating a transmittance of 10 percent of the light at this point. Similarly, the transmittance drops to approximately 1 percent at wavelengths 478 and 604 m μ . Thus, from these curves the transmittance at any point can be seen, while the general shape of the curve gives a very good idea of the transmittance at a glance.

Where the spectra extend into the ultraviolet, the absorption has been determined either photographically or photoelectrically in a quartz spectrophotometer. Transmission in the ultraviolet at wavelengths less than 330 $m\mu$ will be eliminated in the case of cemented filters, as glass absorbs ultraviolet radiation of wavelengths shorter than about 330 $m\mu$. This is shown in the first absorption curve (page 23).

Nearly all dyed gelatin film filters transmit freely in the infrared.

The absorption curves and transmittance data are given as representing standard unmounted samples of KODAK WRATTEN Filters. They are intended only for the information of users in choosing filters which will meet their requirements. Values read from the curves or taken from the tables of data should not be used by research workers as representing precisely the absorption characteristics of a particular filter. If such precise data are needed, they should be determined for the particular filter being used. If facilities are available, this can be done by the user of the filter. The Eastman Kodak Company will be pleased to quote prices on calibrated filters, or such calibrations can be obtained from commercial or national standardizing laboratories.

Colorimetric Specifications

In addition to spectral transmittance data at wavelength intervals of $10 \text{ m}\mu$, the tables give dominant wavelength in millimicrons, percentage of excitation purity, percentage of luminous transmittance, and the colorimetric coordinates x and y, for both the standard source A (incandescent tungsten, 2854 K) and the standard source C (artificial daylight). Chromaticity diagrams showing the plots of the colorimetric coordinates are also included (see pages 60 through 63).

Values of wavelength followed by c indicate the complementary wavelengths of purple filters which do not have a dominant wavelength. In the

case of the extreme red and near infrared filters No. 18A, 87, 88A, and 89B, dominant wavelength is indeterminate (because all wavelengths greater than 700 m μ are coincident at x = 0.7347, y = 0.2653). For these filters, the wavelength centroid, weighted according to luminosity, is given in place of dominant wavelength.

All of these colorimetric specifications are based on the 1931 CIE standard colorimetric and luminosity data. (Reference: *The Science of Color*, OSA Committee on Colorimetry, T. Y. Crowell, N. Y., 1953). The tabulated values were determined from the tabulated spectral transmittance data. Their accuracy and applicability to particular samples are subject to the limitations stated for the spectral transmittance data.

Filter Stability

For purposes of filter manufacture, it is necessary both to select a standard and to establish limits within which a filter coating will be acceptable for use. These limits, as well as the standard, are represented by material samples and also by spectrophotometric data taken from the actual samples. After the limits have been established, the physical data—the spectral-transmittance curves—become the permanent records of the characteristics of any given filter. In general, these curves represent a \pm 5 percent variation in total transmittance from the standard.

The stability of a filter is arbitrarily related to the manufacturing tolerances. In establishing the stability classifications, each filter is exposed to a selected light source for a specific time interval. The extent of change is then expressed as a fraction or multiple of the difference between the light and dark limits that define acceptability in the spectral region from 400 m μ to 700 m μ .

Class A—Stable. The filter shows a change no greater than one-half the difference between the limits.

Class B—Relatively Stable. The filter shows a change which may be equal to but not greater than the difference between the limits.

Class C—Somewhat Unstable. The filter shows a change greater than the difference between the limits, but not more than twice this difference.

Class D—Unstable. The filter shows a change greater than twice the difference between the limits.

The filter-stability classification is shown under each spectrophotometric curve. The classification letters are given in the order of the following stability-tests:

1. Two weeks' exposure to daylight in a south window.

2. Twenty-four hours' exposure to a "Fade-Ometer."

3. Two weeks' exposure at two feet from a 1000-watt tungsten lamp.

Example of Stability Rating: ABA means that the filter was stable to the daylight test, relatively stable to the Fade-Ometer test, and stable to the tungsten-lamp test.

Notice: The dyes used in filters, like other dyes, may, in time, change. Filters will therefore not be replaced or otherwise warranted against any change in transmittance.

Thickness of WRATTEN Filters

KODAK WRATTEN Gelatin Filter film has a thickness of 0.1 mm plus or minus 0.01 mm. Because of its uniform thickness, the gelatin filter is desirable for precise work that can tolerate little effect on definition and no increase in length of the optical path. KODAK WRATTEN Filters cemented in "B" glass squares and circles are approximately 4.7 mm in thickness. The KODAK WRATTEN Filters in series sizes for use with KODAK Combination Lens Attachments are also cemented in "B" glass and vary in thickness according to the diameter or series designation. They range in thickness from 2.7 mm (Series IV) to 4.7 mm (Series IX).

Wavelength λ (millimicrons) Two pieces of "B" Glass cemented

WAVE	H	PERCEN No. 0	IT TRANS	MITTANCE No. 2A	-
400		88.0	59.0		-
10		88.5	76.0	4.0	1
20		88.9	82.0	42.0	
30		89.3	84.6	74.0	
40		89.6	86.0	82.7	
50		89.8	86.8	85.6	-
60		89.9	87.2	87.0	
70		90.1	87.5	88.1	
80		90.3	87.3	88.8	
90		90.4	86.8	89.4	
500		90.5	86.3	89.7	
10		90.6	85.5	90.0	-
20		90.7	84.8	90.2	
30		90.7	84.3	90.3	
40		90.8	84.0	90.4	
50		90.8	83.9	90.5	-
60		90.9	84.1	90.6	
70		90.9	84.8	90.6	0
80		90.9	86.0	90.7	-
90		91.0	87.4	90.7	
600		91.0	88.5	90.8	T
10		91.0	89.5	90.8	-
20		91.0	90.2	90.9	
30		91.0	90.6	90.9	
40		91.1	90.8	90.9	
50		91.1	91.0	91.0	-
60		91.1	91.1	91.0	
70		91.1	91.1	91.0	
80		91.1	91.1	91.1	-
90		91.1	91.1	91.1	
700		91.1	91.1	91.1	
Dominant Wave Lgth.	(A)	578.5	507.5c	579.5	-
Excitation Purity	(A)	1.5	2.0	7.0	C
% Luminous Transmit.	(A)	90.9	86.5	90.5	
XA		0.4484	0.4524	0.4519	
y _A		0.4080	0.4042	0.4131	-
Dominant Wave Lgth.	(C)	573.5	497.6c	568.6	
Excitation Purity	(C)	0.7	1.2	6.0	-
% Luminous Transmit.	(C)	90.8	85.9	90.3	
Xc		0.3112	0.3132	0.3177	-
Vo		0.3177	0.3147	0.3310	
30	-				-

	WAVE LENGTH		PERCENT No. 2B	TRANSMI No. 2C	TTANCE No. 2E
	400		19.0	38.0	-
	10		48.0	60.5	-
	20		67.0	74.2	8.7
-	30		75.3	79.8	51.1
	40		80.0	83.1	75.8
	50		83.0	85.1	82.2
	60		85.2	86.5	84.8
	70		86.7	87.8	86.4
	80		88.1	88.5	87.6
	90		88.8	89.2	88.4
	500		89.5	89.8	89.0
-1	10		89.9	90.0	89.4
	20		90.3	90.2	89.7
_	30		90.5	90.4	89.9
	40		90.6	90.5	90.1
-	50		90.7	90.6	90.2
	60		90.8	90.7	90.4
	70		90.9	90.8	90.5
	80		90.9	90.9	90.6
	90		91.0	91.0	90.6
	600		91.1	91.1	90.7
4	10		91.2	91.2	90.8
	20		91.3	91.3	90.9
	30		91.3	91.4	90.9
	40		91.4	91.5	91.0
	50		91.4	91.5	91.0
	60		91.5	91.6	91.1
-	70		91.5	91.6	91.2
	80		91.6	91.7	91.3
_	90		91.7	91.7	91.4
	700		91.8	91.7	91.4
-	Dominant Wave Lgth.	(A)	581.0	581.0	580.2
	Excitation Purity	(A)	7.0	5.0	12.0
-	% Luminous Transmit.	(A)	90.8	90.8	90.3
	xA		0.4526	0.4512	0.4557
	y _A		0.4126	0.4113	0.4169
	Dominant Wave Lgth.	(C)	569.8	570.2	569.0
	Excitation Purity	(C)	5.6	4.1	10.7
	% Luminous Transmit.	(C)	90.5	9 <mark>0.5</mark>	89.9
	ra		0.3178	0.3158	0.3238
	AC No		0.3298	0.3259	0.3426
_	УC		0.0200	0.0200	5.5420

Stability: BCA

20

WAVE LENGT	4	PERCENT No. 3	TRANSM No. 3N5	IITTANCE No. 4	-
400		_	_	_	
10		-	-	-	-
20		-	-	-	
30		0.36	-	-	
40		1.78	-	-	
50		11.5	1.59	-	-
60		38.0	9.40	6.9	
70		68.0	18.5	42.0	-
80		80.8	23.5	74.0	
90		85.2	25.5	84.7	
500		86.9	26.3	87.5	
10		87.8	26.7	88.5	-
20		88.4	27.0	89.1	
30		89.0	27.2	89.4	-
40		89.5	27.5	89.6	
50		89.8	27.8	89.8	-
60		90.1	27.9	90.0	
70		90.4	28.0	90.2	-
80		90.6	28.4	90.4	-
90		90.7	29.0	90.6	
600		90.8	29.5	90.8	
10		90.9	29.5	90.9	-
20		91.0	29.3	91.0	
30		91.0	29.1	91.1	
40		91.1	29.0	91.2	
50		91.2	29.4	91.3	-
60		91.3	29.6	91.4	
70		91.4	29.8	91.5	-
80		91.5	30.0	91.5	-
90		91.6	30.2	91.6	
700		91.7	31.0	91.6	
Dominant Wave Lgth.	(A)	580.0	581.2	580.0	-
Excitation Purity	(A)	50.0	52.0	64.0	
% Luminous Transmit.	(A)	89.7	28.1	89.5	-
xA		0.4803	0.4851	0.4887	
y _A		0.4470	0.4447	0.4579	-
Dominant Wave Lgth.	(C)	569.4	570.5	569.6	
Excitation Purity	(C)	50.3	56.3	65.1	-
% Luminous Transmit.	(C)	88.3	27.4	87.7	
ra		0.3752	0.3873	0.3955	-
NO		0.4382	0.4485	0.4734	
УС	_	0.4002	0.7700	0.7704	

	WAVE LENGTH		PERCENT No. 6	TRANSMITTANCE No. 8 No. 8N5		
	400		7.40	-	-	
	10		8.32	-	-	
	20		10.4	-	-	
-	30		13.5	-	-	
	40		18.9	_	-	
	50		27.6	_	_	
	60		39.0	0.25	0.16	
	70		52.3	5.50	2.0	
	80		65.8	19.0	6.3	
	90		76.8	41.0	13.2	
	500		83.5	63.5	20.0	
-	10		87.0	78.0	24.3	
	20		88.4	84.1	26.7	
-	30		89.0	86.5	28.0	
	40		89.4	87.7	28.6	
	50		89.7	88.4	29.0	
	60		89.9	88.8	29.3	
	70		90.1	89.2	29.5	
	80		90.3	89.5	29.6	
	90		90.5	89.8	29.8	
	600		90.6	90.1	29.9	
1	10		90.7	90.3	29.6	
	20		90.8	90.5	29.4	
	30		90.9	90.7	29.1	
	40		91.0	90.9	28.8	
-	50		91.1	91.0	28.9	
	60		91.2	91.1	29.2	
-	70		91.2	91.2	29.4	
	80		91.3	91.3	29.5	
	90		91.4	91.4	29.7	
	700		91.5	91.5	30.2	
	Dominant Wave Lgth.	(A)	580.3	581.2	581.1	
	Excitation Purity	(A)	47.5	83.5	84.0	
	% Luminous Transmit.	(A)	89.2	86.6	28.3	
	x _A		0.4796	0.5078	0.5077	
	y _A		0.4444	0.4670	0.4673	
	Dominant Wave Lgth.	(C)	570.2	571.8	572.0	
	Excitation Purity	(C)	44.7	85.2	85.2	
	% Luminous Transmit.	(C)	87.5	82.7	27.0	
	x _C		0.3704	0.4353	0.4362	
	УC		0.4220	0.0000	0.0019	

(K2)

WAVE LENGT	H	PERCEN No. 9	T TRANSI No. 11	MITTANCE No. 12	-
400		-	-	-	
10		-	-	-	
20		-	0.16	-	
30		-	0.29	-	5
40		-	0.56	-	
50		-	1.32	-	
60		-	4.00	-	
70		1.78	12.0	-	1
80		8.31	26.0	-	-
90		20.7	43.7	-	_
500		34.5	55.0	1.50	
10		48.8	60.0	17.3	-
20		62.0	60.2	55.0	
30		76.0	57.8	77.8	
40		83.8	54.2	86.0	
50		87.0	50.0	88.4	
60		88.3	44.8	89.4	
70		88.8	38.9	89.7	
80		89.1	33.1	90.1	
90		89.3	27.6	90.3	
600		89.5	22.7	90.4	
10		89.7	19.0	90.5	
20		89.8	14.9	90.7	
30		89.9	11.4	90.8	-
40		90.0	9.10	90.9	
50		90.1	8.05	91.0	-
60		90.1	7.50	91.1	
70		90.2	7.05	91.2	
80		90.2	6.50	91.2	
90		90.3	6.10	91.2	
700		90.3	6.20	91.3	
Dominant Wave Lgth.	(A)	582.8	552.5	583.6	-
Excitation Purity	(A)	90.5	50.0	96.5	
% Luminous Transmit.	(A)	82.4	36.3	81.2	
x _A		0.5223	0.3833	0.5331	
УA		0.4623	0.5421	0.4610	-
Dominant Wave Lgth.	(C)	574.4	550.3	576.3	
Excitation Purity	(C)	91.5	60.7	97.7	-
% Luminous Transmit.	(C)	76.6	40.2	73.8	
xc		0.4605	0.3063	0.4825	-
Ve		0.5068	0.5435	0.5083	
20					

-	WAVE LENGTH		PERCENT No. 13	TRANSMI No. 15	TTANCE No. 16
	400		_	_	-
	10		_	_	-
	20		-	_	-
	30		0.18	-	_
	40		0.50	_	_
	50		1.35	_	_
	60		4.08	_	-
	70		11.0		_
	80		23.5	_	-
	90		39.0	_	_
-			50.0		
	500		50.8	1.0	_
	10		55.2	1.0	2.00
	20		56.5	19.4	3.00
	30		55.0	30.2	22.0
	40		51.0	77.0	40.0
	50		40.0	00.0	70.5
_	50		39.2	00.2	79.5
	/0		32.0	09.0	96.3
	00		10.2	09.0	97.9
	90		10.2	90.1	67.0
	600		13.5	90.4	89.0
	10		9.60	90.5	89.6
	20		6.40	90.6	90.0
-	30		3.66	90.7	90.2
	40		2.20	90.8	90.3
	50		1.58	90.9	90.4
	60		1.74	91.0	90.5
	70		2.62	91.1	90.6
	80		3.55	91.1	90.7
	90		4.48	91.1	90.8
	700		5.25	91.1	90.8
	Dominant Wave Lgth.	(A)	537.1	585.9	588.7
	Excitation Purity	(A)	46.0	98.0	99.0
	% Luminous Transmit.	(A)	30.0	75.5	67.9
	x _A		0.3381	0.5485	0.5667
	y _A		0.5741	0.4481	0.4314
	Dominant Wave Lgth.	(C)	542.0	579.2	582.7
	Excitation Purity	(C)	57.6	99.0	99.4
	% Luminous Transmit.	(C)	34.5	66.6	57.7
	Xc		0.2723	0.5048	0.5289
	УC		0.5618	0.4905	0.4684

(G)

WAVE LENGT	H	PERCEN No. 18A	T TRANSI No. 21	MITTANCE No. 22	
400		1	_	_	
10		-	-	-	-
20		-	_	-	
30				-	-
40		_	_	_	
50		_	_	_	-
60		-	_	_	
70		_	_	_	1
80		_	-	_	-
90		-	-	-	
500		-	-	_	
10		-	-	-	-
20		-	-	-	
30		-	-	-	
40		_	2.50	-	
50		_	29.0	0.25	
60		_	65.0	19.0	
70		<u>`_</u>	80.6	60.0	1
80		_	85.4	81.0	
90		-	87.3	87.0	
600		-	88.1	88.5	
10		-	88.7	89.0	-
20		-	89.0	89.5	
30		-	89.5	89.8	-
40		-	89.9	90.0	
50		_	90.2	90.1	-
60		_	90.4	90.2	
70			90.5	90.3	-
80		-	90.5	90.4	
90		-	90.6	90.5	
700	,	0.36	90.6	90.6	
Dominant Wave Lgth.	(A)	720.0	593.7	598.8	-
Excitation Purity	(A)	100.0	100.0	100.0	
% Luminous Transmit.	(A)	0.0011	57.4	48.2	
r.		0.7347	0.5955	0.6214	
$\begin{array}{c} x_{\mathrm{A}} \\ y_{\mathrm{A}} \end{array}$		0.2653	0.4037	0.3780	-
Dominant Wave Lgth.	(C)	720.0	588.9	595.1	
Excitation Purity	(C)	100.0	99.9	99.9	-
% Luminous Transmit.	(C)	0.0004	45.6	35.8	
ra		0.7347	0.5686	0.6030	-
Jr.		0 2653	0 4304	0.3964	
УС		5.2005	0.4004	0.0004	

400 - - - 10 - - - 20 - - - 30 - - - 30 - - - 50 - - - 60 - - - 70 - - - 80 - - - 90 - - - 90 - - - 30 - - - 90 - - - 90 - - - 30 - - - 40 - - - 60 - - - 60 - - - 70 11.0 - - 80 47.0 4.55 - 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9		WAVE LENGTH	1	PERCENT No. 23A	TRANSM No. 24	ITTANCE No. 25
10 - - - 20 - - - 30 - - - 30 - - - 30 - - - 30 - - - 50 - - - 50 - - - 70 - - - 90 - - - 90 - - - 10 - - - 20 - - - 30 - - - 50 - - - 70 11.0 - - 80 47.0 4.55 - 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 8		400		-	_	-
20 30 40 50 60 70 80 90 10 20 30 30 50 60 70 11.0 80 47.0 4.55 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 82.6 30	-	10		- (-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20		-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	30		-	-	-
50 - - - 60 - - - 70 - - - 80 - - - 90 - - - 90 - - - 90 - - - 90 - - - 90 - - - 90 - - - 30 - - - 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 82.6 30 87.9 87.8 85.5 40 88.5 88.5 86.7 50 <td< td=""><th></th><th>40</th><td></td><td></td><td>-</td><td>-</td></td<>		40			-	-
60 - - - 70 - - - 80 - - - 90 - - - 90 - - - 10 - - - 20 - - - 30 - - - 30 - - - 40 - - - 50 - - - 60 - - - 70 11.0 - - 80 47.0 4.55 - 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 82.6 30 87.9 87.8 85.5 40 88.5 88.5 86.7 50 89.4		50		_	_	
70 - - - 80 - - - 90 - - - 10 - - - 20 - - - 30 - - - 30 - - - 30 - - - 40 - - - 50 - - - 60 - - - 70 11.0 - - 80 47.0 4.55 - 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 82.6 30 87.9 87.8 85.5 40 88.5 88.5 86.7 50 89.0 89.0 87.6 60 89.4		60		_	_	_
80 - - - 90 - - - 10 - - - 20 - - - 30 - - - 30 - - - 30 - - - 40 - - - 50 - - - 60 - - - 70 11.0 - - 80 47.0 4.55 - 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 82.6 30 87.9 87.8 85.5 40 88.5 88.5 86.7 50 89.0 89.0 87.6 60 60 89.4 89.3 88.2		70		-	_	-
90 - - 500 - - - 10 - - - 20 - - - 30 - - - 40 - - - 50 - - - 60 - - - 70 11.0 - - 60 - - - 70 11.0 - - 80 47.0 4.55 - 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 82.6 30 87.9 87.8 85.5 40 88.5 86.7 50 89.0 89.0 89.0 90 90.0 90.2 89.3 80 89.8 89.9		80		_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		90		-	_	-
10 - - - 20 - - - 30 - - - 40 - - - 50 - - - 60 - - - 70 11.0 - - 80 47.0 4.55 - 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 82.6 30 87.9 87.8 85.5 40 88.5 88.7 86.7 50 89.0 89.0 89.0 89.0 90 90.0 90.2 89.3 88.2 70 89.6 89.7 88.5 80.7 80 89.8 89.9 89.0 90 90.2 89.3 700 90.2 90.3 <td< td=""><th></th><th>500</th><td></td><td>_</td><td>_</td><td>-</td></td<>		500		_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1	10		_		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20		-	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	30		_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	40		_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	50		_	_	_
70 11.0 - - 80 47.0 4.55 - 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 82.6 30 87.9 87.8 85.5 40 88.5 88.5 86.7 50 89.0 89.0 87.6 60 89.4 89.3 88.2 70 89.6 89.7 88.5 80 89.8 89.9 89.0 90 90.0 90.2 89.3 700 90.2 90.3 89.5 Dominant Wave Ligth. (A) 605.5 612.5 617.2 Excitation Y _A 0.6498 0.6735 0.6850 Y_A 0.3498 0.3263 0.3147 Dominant Y _A (C) 602.6 610.6 615.3 Excitation Y _A <td< td=""><th></th><th>60</th><td></td><td>_</td><td>_</td><td></td></td<>		60		_	_	
No 11.0 4.55 - 90 69.6 37.3 12.6 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 82.6 30 87.9 87.8 85.5 40 88.5 88.5 86.7 50 89.0 87.6 60 89.4 89.3 88.2 70 89.6 89.7 88.5 80 89.8 89.9 89.0 90 90.0 90.2 89.3 89.5 Dominant Wave Ligth. (A) 605.5 612.5 617.2 617.2 Excitation Purity (A) 100.0 100.0 100.0 100.0 $\sqrt{2}$ Luminous (A) 36.3 27.5 22.5 x_A 0.6498 0.6735 0.6850 y_A 0.3498 0.3263 0.3147 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	-	70		11.0	_	_
v_{00} $v_{1.00}$ $v_{1.00$	1	80		47.0	4 55	_
S0 03.0 37.3 12.0 600 82.7 72.3 50.0 10 85.8 82.9 75.0 20 87.2 86.4 82.6 30 87.9 87.8 85.5 40 88.5 88.5 86.7 50 89.0 87.6 60 89.4 89.3 88.2 70 89.6 89.7 88.5 80 89.8 89.9 89.0 90 90.0 90.2 90.3 89.5 89.5 607.2 89.6 100.0 100.0 90 90.0 90.2 90.3 89.5 617.2 50.6 617.2 50.6 617.2 50.6 50.0 100.0 <		90		69.6	37.3	12.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				09.0	57.5	12.0
10 85.8 82.9 75.0 20 87.2 86.4 82.6 30 87.9 87.8 85.5 40 88.5 88.5 86.7 50 89.0 89.0 87.6 60 89.4 89.3 88.2 70 89.6 89.7 88.5 80 89.8 89.9 89.0 90 90.0 90.2 89.3 700 90.2 90.3 89.5 Dominant Wave Lgth. (A) 605.5 612.5 617.2 Excitation Purity (A) 100.0 100.0 100.0 % Luminous (A) 36.3 27.5 22.5 x_A 0.6498 0.6735 0.6850 y_A 0.3498 0.3263 0.3147 Dominant Wave Lgth. (C) 602.6 610.6 615.3 Excitation Furity (C) 99.9 99.9 100.0 y_A 0.6386 </th <th></th> <th>600</th> <th></th> <th>82.7</th> <th>72.3</th> <th>50.0</th>		600		82.7	72.3	50.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	10		85.8	82.9	75.0
30 87.9 87.8 85.5 40 88.5 88.5 86.7 50 89.0 89.0 87.6 60 89.4 89.3 88.2 70 89.6 89.7 88.5 80 89.8 89.9 89.0 90 90.0 90.2 89.3 700 90.2 90.3 89.5 0 90.0 90.2 89.3 700 90.2 90.3 89.5 0 90.0 90.2 89.3 700 90.2 90.3 89.5 0 90.0 90.2 89.3 700 90.2 90.3 89.5 0 90.0 90.2 89.3 700 90.2 90.3 89.5 0 605.5 612.5 617.2 Excitation (A) 100.0 100.0 % Luminous (A) 36.3 27.5 22.5		20		87.2	86.4	82.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	30		87.9	87.8	85.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		40		88.5	88.5	86.7
60 89.4 89.3 88.2 70 89.6 89.7 88.5 80 89.8 89.9 89.0 90 90.0 90.2 89.3 700 90.2 90.3 89.5 Dominant Wave Leth. (A) 605.5 612.5 617.2 Excitation Purity (A) 100.0 100.0 100.0 % Luminous Yransmit. (A) 36.3 27.5 22.5 X _A 0.6498 0.6735 0.6850 Y _A 0.3498 0.3263 0.3147 Dominant Wave Leth. (C) 602.6 610.6 615.3 Excitation Purity (C) 99.9 99.9 100.0 ½ Luminous (C) 25.0 17.7 14.0 X _C 0.6386 0.6675 0.6808 X _G 0.3610 0.3322 0.3140	-	50		89.0	89.0	87.6
70 89.6 89.7 88.5 80 89.8 89.9 89.0 90 90.0 90.2 89.3 700 90.2 90.3 89.5 Dominant Wave Leth. (A) 605.5 612.5 617.2 Excitation Purity (A) 100.0 100.0 100.0 $\frac{9}{2}$ Luminous Transmit. (A) 36.3 27.5 22.5 x_A y_A 0.6498 0.6735 0.6850 y_A 0.3498 0.3263 0.3147 Dominant Wave Leth. (C) 602.6 610.6 615.3 Excitation Purity (C) 99.9 99.9 100.0 $\frac{9}{2}$ Luminous $\frac{1}{2}$ C 0.6386 0.6675 0.6808 $\frac{9}{2}$ Luminous $\frac{1}{2}$ C 0.6386 0.6675 0.6808		60		89.4	89.3	88.2
80 89.8 89.9 89.0 90 90.0 90.2 89.3 700 90.2 90.3 89.5 Dominant Wave Leth. (A) 605.5 612.5 617.2 Excitation Purity (A) 100.0 100.0 100.0 % Luminous Transmit. (A) 36.3 27.5 22.5 X _A Y _A 0.6498 0.6735 0.6850 Y _A 0.6498 0.3263 0.3147 Dominant Wave Leth. (C) 602.6 610.6 615.3 Excitation Furity (C) 99.9 99.9 100.0 % Luminous Transmit. (C) 25.0 17.7 14.0 X _C 0.6386 0.6675 0.6808 0.3120	-	70		89.6	89.7	88.5
90 90.0 90.2 89.3 700 90.2 90.3 89.5 Dominant Wave Lgth. (A) 605.5 612.5 617.2 Excitation Furity (A) 100.0 100.0 100.0 % Luminous Transmit. (A) 36.3 27.5 22.5 XA YA 0.6498 0.6735 0.6850 YA 0.3498 0.3263 0.3147 Dominant Wave Lgth. (C) 602.6 610.6 615.3 Excitation Furity (C) 99.9 99.9 100.0 % Luminous Yea 0.6386 0.6675 0.6808 0.3610 0.3322 0.3140		80		89.8	89.9	89.0
700 90.2 90.3 89.5 Dominant Wave Lgth. (A) 605.5 612.5 617.2 Excitation Purity (A) 100.0 100.0 100.0 % Luminous Yransmit. (A) 36.3 27.5 22.5 x_A 0.6498 0.6735 0.6850 y_A 0.3498 0.3263 0.3147 Dominant Wave Lgth. (C) 602.6 610.6 615.3 Excitation Purity (C) 99.9 99.9 100.0 % Luminous Transmit. (C) 25.0 17.7 14.0 x_C 0.6386 0.6675 0.6808 y_O 0.3610 0.3322 0.3190		90		90.0	90.2	89.3
Dominant Wave Leth. (A) 605.5 612.5 617.2 Excitation Purity (A) 100.0 100.0 100.0 % Luminous Transmit. (A) 36.3 27.5 22.5 x_A y_A 0.6498 0.6735 0.6850 y_A 0.3498 0.3263 0.3147 Dominant Wave Leth. (C) 602.6 610.6 615.3 Excitation Furity (C) 99.9 99.9 100.0 % Luminous Transmit. (C) 25.0 17.7 14.0 x_C 0.6386 0.6675 0.6808 y_G 0.3610 0.3322 0.3190		700	-	90.2	90.3	89.5
Excitation Purity (A) 100.0 100.0 100.0 $\frac{9}{V}$ Luminous (A) 36.3 27.5 22.5 x_A 0.6498 0.6735 0.6850 y_A 0.3498 0.3263 0.3147 Dominant Wave Lgth. (C) 602.6 610.6 615.3 Excitation Functions (C) 99.9 99.9 100.0 $\frac{9}{V}$ Luminous (C) 25.0 17.7 14.0 x_C 0.6386 0.6675 0.6808 0.3610 0.3322 0.3190	-	Dominant Wave Lgth.	(A)	605.5	612.5	617.2
$\frac{1}{2}$ Luminous (A) 36.3 27.5 22.5 x_A 0.6498 0.6735 0.6850 y_A 0.3498 0.3263 0.3147 Dominant Wave Lgth. (C) 602.6 610.6 615.3 Excitation Purity (C) 99.9 99.9 100.0 $\frac{1}{2}$ Luminous (C) 25.0 17.7 14.0 x_C 0.6386 0.6675 0.6808 0.3610 0.3322 0.3190		Excitation Purity	(A)	100.0	100.0	100.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		% Luminous Transmit.	(A)	36.3	27.5	22.5
y_A 0.3498 0.3263 0.3147 Dominant Wave Lgth. (C) 602.6 610.6 615.3 Excitation Purity (C) 99.9 99.9 100.0 % Luminous Transmit. (C) 25.0 17.7 14.0 x_C 0.6386 0.6675 0.6808 0.3610 0.3322 0.3190		XA		0.6498	0.6735	0.6850
Dominant Wave Lgth. (C) 602.6 610.6 615.3 Excitation Purity (C) 99.9 99.9 100.0 % Luminous Transmit. (C) 25.0 17.7 14.0 x_C 0.6386 0.6675 0.6808 0.3610 0.3322 0.3190		y _A		0.3498	0.3263	0.3147
Excitation Purity (C) 99.9 99.9 100.0 $\frac{\%}{Transmit.}$ (C) 25.0 17.7 14.0 x_C 0.6386 0.6675 0.6808 χ_C 0.3610 0.3322 0.3190		Dominant Wave Lgth.	(C)	602.6	610.6	615.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Excitation Purity	(C)	99.9	99.9	100.0
$x_{\rm C}$ 0.6386 0.6675 0.6808 $y_{\rm C}$ 0.3610 0.3322 0.3190		% Luminous Transmit.	(C)	25.0	17.7	14.0
Vo 0.3610 0.3322 0.3190		xc		0.6386	0.6675	0.6808
		Vo		0.3610	0.3322	0.3190

WAVE LENGTI	H	PERCENT No. 26	TRANSN No. 29	No. 30	-
400		_	-	50.5	
10		_	-	48.8	1
20		-	-	49.2	
30		_	-	50.6	
40		_	-	49.7	
50		-	-	45.2	-
60		-	-	26.8	
70		-	_	12.6	
80		-	-	4.73	-
90		-	-	0.62	
500		-	-	-	-
10		-	-	-	-
20		-	-	-	
30		-	-	-	-
40		-	-	-	1
50		-	-	-	
60		-	-	-	
70		-	-	15.0	1
80		-	-	53.8	-
90		2.90	-	79.5	
600		30.0	-	87.2	7
10		63.2	10.5	89.2	2
20		78.9	45.0	89.9	
30		84.0	73.5	90.3	
40		86.1	84.2	90.5	
50		87.2	87.8	90.6	-
60		88.1	89.2	90.8	
70		88.5	89.8	90.9	1
80		88.9	90.3	91.0	-
90		89.2	90.4	91.0	
700		89.5	90.5	91.1	
Dominant Wave Lgth.	(A)	620.6	632.7	505.5c	-
Excitation Purity	(A)	100.0	100.0	58.5	
% Luminous Fransmit.	(A)	19.1	11.0	37.8	
XA		0.6926	0.7116	0.6023	-
y _A	-	0.3073	0.2883	0.3175	-
Dominant Wave Lgth.	(C)	618.9	631.6	498.6c	
Excitation Purity	(C)	100.0	100.0	62.5	-
% Luminous Transmit.	(C)	11.6	6.3	26.6	
Xc		0.6894	0.7102	0.4520	-
yc		0.3105	0.2898	0.2270	
	14				-

	WAVE LENGTH		PERCENT No. 31	TRANSMI No. 32	TTANCE No. 33
	400		13.8	38.0	0.85
	10		14.5	37.9	0.71
	20		16.4	40.0	1.17
	30		25.5	43.0	1.69
	40		42.7	55.5	5.36
	50		50.2	66.0	14.3
	60		40.4	66.0	12.4
-	70		22.6	57.0	5.00
	80		8 20	40.0	0.50
	90		1.85	21.0	_
	500		0.12	9.56	-
-	10		-	2.51	-
	20		-	0.13	-
-	30		-	-	
1	40		-	-	-
	50		-	-	-
	60		-	-	—
	70		-	-	-
	80		-	-	-
	90		0.63	-	-
	600		26.0	6.04	-
-	10		67.2	41.0	0.80
	20		84.0	75.0	24.9
_	30		88.1	86.1	60.8
	40		89.8	89.0	78.0
	50		90.2	90.0	85.0
	60		90.4	90.6	87.5
	70		90.5	90.7	88.7
	80		90.7	90.8	89.4
	90		90.8	90.9	89.8
	700		91.0	91.0	90.0
	Dominant Wave Lgth.	(A)	512.6c	546.8c	506.6c
	Excitation Purity	(A)	80.0	77.0	90.0
	% Luminous Transmit.	(A)	19.8	16.9	8.9
	x _A		0.6095	0.5410	0.6733
-	УA		0.2623	0.2281	0.2641
	Dominant Wave Lgth.	(C)	513.2c	551.8c	498.0c
	Excitation Purity	(C)	81.8	79.5	88.3
	% Luminous Transmit.	(C)	12.9	12.5	5.2
-	xc		0.4044	0.3079	0.5198
	УС		0.1572	0.1179	0.1947

WAVE		PERCENT TRANSMITTANCE No. 34 No. 34A No. 35					
400		64.0	_	48.0	1		
10		70.1	4.5	57.0	-		
20		72.0	40.0	57.6			
30		68.4	69.7	47.5			
40		58.2	68.7	29.5			
50		42.3	56.2	12.3	_		
60		25.2	40.5	3.5			
70		12.1	23.8	0.25	-		
80		2.7	9.2	_	-		
90		0.2	2.3	-			
500		-	0.33	-			
10		-	-	-	-		
20		-	-	-			
30		-	-	-	-		
40		-	-	-	L		
50		-	-	-			
60		-	-	-			
70		-	-	-			
80		-	-	-	-		
90		-	-	-			
600		(_	_	1		
10		-	0.13	-	-		
20		_	1.0	-			
30		-	6.3	_			
40		0.4	22.0	-			
50		4.0	45.0	0.1	-		
60		20.7	65.0	3.0			
70		45.2	77.3	19.0			
80		66.5	85.0	43.5			
90		78.8	88.2	66.0			
700		85.0	89.8	77.7			
Dominant Wave Lgth.	(A)	577.5c	574.0c	577.2c			
Excitation Purity	(A)	94.0	91.5	97.0			
% Luminous Transmit.	(A)	1.12	3.5	0.47			
XA		0.2764	0.3917	0.2863			
y _A		0.0692	0.1286	0.0650	-		
Dominant Wave Lgth.	(C)	427.0	565.6c	566.9c			
Excitation Purity	(C)	94.7	90.6	96.6	-		
% Luminous Transmit.	(C)	1.24	2.9	0.43			
ro		0.1772	0.2060	0.1813	-		
NC NC		0.0230	0.0432	0.0168			
УС	-		10102	5.0100			
	WAVE LENGTH		PERCENT No. 36	TRANSM No. 38	ITTANCE No. 38A		
---------	-------------------------	-----	-------------------	------------------	--------------------		
	400		36.5	60.5	33.9		
	10		45.5	66.5	43.5		
	20		45.5	72.5	53.1		
_	30		32.7	75.3	57.5		
	40		15.2	76.2	58.1		
-	50		3.7	75.9	56.7		
	60		0.35	74.8	54.2		
	70		_ `	73.4	51.0		
	80		-	71.6	47.5		
	90		-	69.5	43.8		
	500		-	66.7	39.7		
	10		-	63.9	35.7		
	20		-	60.8	31.8		
-	30		-	57.0	27.7		
	40		-	52.6	22.8		
	50		-	48.0	18.2		
	60		-	42.8	13.7		
	70		-	37.0	9.6		
	80		-	30.6	6.3		
	90		-	25.5	3.9		
	600		-	20.9	2.6		
	10		-	16.8	1.6		
	20		-	12.9	1.0		
-	30		-	10.0	0.5		
	40		-	7.79	0.2		
	50		-	6.68	-		
	60		0.21	6.20	-		
	70		7.5	5.91	-		
	80		29.0	5.41	-		
	90		55.0	4.90	-		
	700	-	71.3	5.00			
	Dominant Wave Lgth.	(A)	576.9c	494.3	489.3		
	Excitation Purity	(A)	98.0	33.5	63.5		
- Trans	% Luminous Transmit.	(A)	0.29	36.1	12.6		
	r.		0.2969	0.3062	0.1934		
11	y _A		0.0673	0.4038	0.3263		
-	Dominant Wave Lgth.	(C)	566.6c	483.5	478.8		
	Excitation Purity	(C)	97.6	41.7	69.7		
	% Luminous Transmit.	(C)	0.23	42.5	17.3		
2002	xc		0.1837	0.2122	0.1606		
	VC		0.0154	0.2583	0.1796		
-							

WAVE	1	PERCENT No. 39	TRANSM No. 40	ITTANCE No. 44	
400		85.2	-	0.43	
10		78.2	-	0.27	
20		70.5	-	0.40	
30		63.3	_	3.24	
40		53.6	-	13.1	
50		42.5	_	24.7	-
60		28.5	3.16	35.7	
70		17.3	21.6	45.5	
80		10.2	44.7	53.3	
90		4.00	61.4	56.7	
500		1.33	70.2	55.4	
10		0.35	72.4	49.9	-
20		-	70.5	41.0	
30		-	64.8	29.3	-
40		-	55.5	17.0	
50			44.2	7.58	
60		-	32.5	2.40	
70		-	20.3	0.36	
80		-	9.56	-	-
90		-	3.20	-	
600		-	1.10	-	
10		-	0.32	-	1
20		-	-	-	
30		-	-	-	
40		-	-	-	
50		-	-	-	-
60		-	-	-	
70		-	-	-	
80		0.50	0.80	-	-
90		4.06	6.99	0.32	
700		17.8	23.5	2.48	
Dominant Wave Lgth.	(A)	454.5	513.4	495.1	-
Excitation Purity	(A)	98.0	53. <mark>5</mark>	76.5	
% Luminous Transmit.	(A)	0.39	26.2	10.3	_
XA		0.1570	0.2229	0.1236	
y _A		0.0287	0.6165	0.4126	-
Dominant Wave Lgth.	(C)	450.8	51 <mark>6.2</mark>	488.7	-
Excitation Purity	(C)	98.9	48.6	73.4	
% Luminous Transmit.	(C)	1.15	33.6	15.6	
Xc		0.1574	0.1823	0.1200	-
yc		0.0216	0.5611	0.2807	

	WAVE LENGTH		PERCENT No. 44A	TRANSM No. 45	ITTANCE No. 45A			200	300	
-	400	1	1.55	-	-	.1%	3		1	
	10		1.41	_	-					
	20		3.39	_	-					
	30		13.5	-	1.00	<mark>ير الا</mark>	2		 +	_
	40		30.7	4.20	8.81	TAN	٨			
2	50		43.0	18.2	17.4	IIWS	ISN			
	60		49.5	30.2	20.9	RAN	0			
-	70		52.3	35.9	21.6	- 10%	1		1	
	80		53.3	37.2	20.5					
	90		52.3	35.1	18.0					
-	500		49.1	28.8	14.4	100%	0	00	300	
	10		44.3	18.8	10.1					
	20		37.6	8.9	5.60					
	30		28.9	2.35	2.52					
	40		19.1	0.33	0.64					
	50		10.7	-	0.10					
	60		4.68	_						
-	70		1.38		-					
	80		0.19	_				200	300	
	90		- '	-	-	.1%	3			
-	600		-	-	_					
	10		-	—	-	19				
	20		-		-	ANCE N	2			Ī
	30		_	_	—	11	SITY			
	40			-	—	ANSI	DEN			
-	50		-	-	_	[≈] 10%	1		+	
	60		-	—	—					
-	70		-	-	_					
	80		-	_	—	1009				
	90	-	0.21	_	0.20	100.6	1	00	300	
	700		0.71	0.49	2.24					
-	Dominant Wave Lgth.	(A)	<mark>491.9</mark>	486.6	483.5					
	Excitation Purity	(A)	76.0	90.0	90.5					
-	% Luminous Transmit.	(A)	10.1	2.8	1.5					
-	x _A		0.1348	0.0998	0.1122	.1%	3	200	300	
	y_A		0.3349	0.2431	0.1990					
-	Dominant Wave Lgth.	(C)	484.2	481.5	477.6	XI NCE	2		-	
-	Excitation Purity	(C)	75.2	88.6	89.6	VSMITTA	ENSITY			
	% Luminous Transmit.	(C)	15.2	5.2	2.8	IRA)	1			
	ra		0.1314	0.1108	0.1222					
	No		0.2199	0.1692	0.1305					
-	- yC					- 100%	0			l

WAVE LENGT	H	PERCEN No. 46	T TRANSM No. 47	No. 47A	-
400		1.20	7.80	26.4	
10		0.60	17.4	40.3	-
20		0.80	34.0	54.5	
30		5.98	47.0	62.1	
40		19.0	50.3	63.5	
50		30.1	48.3	61.8	-
60		33.8	43.4	58.2	
70		32.1	36.2	53.0	
80		27.0	28.5	46.4	1
90		20.2	19.6	38.6	
500		11.1	11.3	29.5	
10		4.39	5.64	20.3	-
20		1.66	1.91	11.9	
30		0.35	0.36	5.44	-
40		-	-	1.95	
50		-	-	0.58	1
60		-	-	0.18	
70		-	-	-	1
80		-	-	-	-
90		-	-	-	
600		-	-	-	7
10		-	-	-	1
20		-	-	-	
30		- *	-	-	
40		-	-	-	
50		-	-	-	-
60		• -	-	-	
70		-	-	0.16	1
80		-	-	0.33	-
90	_	0.25	-	0.59	
700		0.85	-	0.96	
Dominant Wave Lgth.	(A)	475.1	470.1	477.5	-
Excitation Purity	(A)	95.5	96.0	91.7	1
% Luminous Transmit.	(A)	1.05	1.2	3.4	
r.		0.1245	0.1371	0.1322	
\mathcal{Y}_{A}		0.1014	0.0724	0.1361	-
Dominant Wave Lgth.	(C)	470.4	463.8	469.7	
Excitation Purity	(C)	94.9	95.7	91.8	-
% Luminous Transmit.	(C)	2.4	2.8	6.6	
xc		0.1327	0.1451	0.1410	-
УC		0.0727	0.0485	0.0790	

	WAVE LENGTI	4	PERCENT No. 47B	T TRANSM No. 48	ITTANCE No. 48A	200 300 400 500 600 700	
	400		16.0	0.96	4.51	.1% 3	
	10		29.5	3.16	9.32		
	20		43.6	8.25	16.9		
_	30		50.0	15.0	22.4		
	40		47.2	22.6	25.9		
-	50		36.0	30.3	27.1		470
	60		25.0	33.2	23.2		4/8
-	70		13.2	29.6	16.6		Slu
	80		4.5	22.4	9.78		210
2	90		1.3	14.1	4.57		
	500		0.17	7.30	1.62	200 300 400 500 600 700	
	10		-	2.64	0.26	Stability: BBB	
	20		-	0.50	-		
-	30		-	_	_		
	40		-	_	_		
-	50		-	-			
	60		-	_	_		
	70		-	-	_		
	80		_	-	_	200 300 400 500 600 700	
	90		-	-	-	- 17 3	
	600		-	-	-		
	10		-	_	_	بر الله عنه الله الله الله الله الله الله الله ال	
	20		-	-	-	L IAN	
-	30		-	_	-	TINS SMIT	48
	40		-	-	-		
0	50		-	-	<u> </u>		
	60		-		-		
	70		-	-	-		
	80		-	_	_		
	90		- "	-		200 300 400 500 600 700 - Stability: CBC	
	700	_	_		-		
	Wave Lgth.	(A)	452.7	471.1	462.5	-	
	Purity	(A)	99.0	96.5	98.0		
	Transmit.	(A)	0.23	0.75	0.31	200 300 400 500 600 700	
; 1	$\begin{array}{c} x_{\mathrm{A}} \\ y_{\mathrm{A}} \end{array}$		0.1554	0.1320	0.1453		
-	Dominant Wave Lgth.	(C)	449.4	466.5	458.0		
	Excitation Purity	(C)	99.4	96.1	98.2	NSMITTA - NEW TOTAL - NEW TOTA	48A
-	% Luminous Transmit.	(C)	0.79	1.86	0.88		
	r-		0.1579	0.1393	0 1499		
	AC No		0.0187	0.0547	0.0318		
	УС		0.0107	5.0047	0.0518		
						200 300 400 500 600 700	

Stability: AAA

WAVE LENGT	H	PERCEN No. 49	PERCENT TRANSMITTANCE No. 49 No. 49B No. 50										
400		3.30	1.5										
10		4.28	2.5	_									
20		6.93	4.1	_									
30		11.2	7.8	16									
40		18.9	14.1	8.2									
50		25.6	10.2	12.7									
60		24.0	10.2	10.5									
70		15 7	14.0	10.5									
/0		15.7	1.2	4.2									
80		6.93	2.2	0.9	-								
90		2.14	0.23	-									
500		0.46	_	_	-								
10		_	-	_									
20		_	-	-									
30		_	-	_									
40		_	_	_									
50		_	_										
60		_											
70		1.5											
20		_	-	-									
00		-		-	-								
50				_									
600		-	-	-	-								
10		- /	-	-									
20		_	_	-									
30		_	_	_									
40		_		_									
50		_	_	_									
60		_	_	_									
70		_											
80													
90				-	-								
		U.S.		-									
700		-	-	-									
Dominant Wave Lgth.	(A)	461.0	457.7	457.7	-								
Excitation Purity	(A)	98. <mark>5</mark>	99.0	99.5									
% Luminous Transmit.	(A)	0.23	0.11	0.079	-								
x.		0.1457	0.1492	0.1488									
y _A		0.0353	0.0285	0.0279									
Dominant Wave Lgth.	(C)	457.8	455.3	455.7	-								
Excitation Purity	(C)	98.8	99.2	99.4									
% Luminous Transmit.	(C)	0.69	0.36	0.26	-								
ro		0.1491	0.1517	0.1509									
No		0.0299	0.0252	0.0254									
<i>JC</i>	-			0.0204	_								

-	WAVE LENGTH	1	PERCENT No. 52	TRANSMI No. 53	TTANCE No. 54
	400		2.18	0.30	-
	10		1.51	0.22	-
	20		0.80	0.09	-
_	30		0.44	-	-
	40		0.41	-	-
	50		0.69	-	-
	60		1.45	-	-
	70		2.70	0.10	-
-	80		4.90	0.71	-
	90		8.50	2.14	_
	500		13.3	4.47	-
	10		18.2	7.24	0.10
	20		23.7	10.7	0.31
	30		28.5	14.0	0.64
	40		32.1	16.6	0.89
	50		33.1	17.3	0.93
	60		31.0	15.4	0.62
	70		25.6	11.4	0.21
	80		19.1	6.90	_
	90		12.6	3.60	
	600		7.78	1.41	-
-	10		4.17	0.40	-
	20		2.34	0.15	
-	30		1.38	_	_
	40		0.80	_	_
	50		0.34	_	_
	70		0.30		
	80		0.27	_	_
	90		0.19	_	-
	700	-	0.17	-	_
	Dominant Wave Lgth.	(A)	554.9	552.0	545.8
	Excitation Purity	(A)	71.0	82.5	94.0
	% Luminous Transmit.	(A)	18.3	8.1	0.027
	x _A		0.3684	0.3382	0.2829
-	y _A		0.5875	0.6327	0.6997
	Dominant Wave Lgth.	(C)	553.2	551.0	546.1
	Excitation Purity	(C)	77.2	89.2	97.1
	% Luminous Transmit.	(C)	20.1	9.0	0.032
	xc		0.3213	0.3090	0.2746
	УС		0.5902	0.6459	0.7060

WAVE	4	PERCENT No. 55			
400		-	_	-	
10		-	-	-	-
20		-	-	-	
30		-	-	-	_
40		-		-	
50		-	-	_	-
60		0.20	0.36	0.44	
70		2.90	2.9	3.10	
80		13.1	12.5	13.1	
90		34.2	32.2	31.9	
500		56.0	55.2	50.5	
10		67.0	71.5	60.6	-
20		69.3	78.8	63.3	
30		65.1	80.3	61.0	-
40		56.7	77.6	55.0	
50		45.0	72.4	47.1	-
60		33.1	65.7	37.3	
70		20.7	56.9	26.5	
80		9.00	44.7	16.6	
90		2.70	32.0	8.69	
600		0.40	23.1	3.70	
10		-	18.1	1.60	-
20			12.9	0.49	
30		-	7.0	-	-
40		-	2.9	-	
50		-	1.7	-	_
60		-	2.3	-	
70		-	6.7	-	
80		0.66	20.0	-	
90		6.90	42.2	-	
700		27.8	63.3	-	
Dominant Wave Lgth.	(A)	524.1	555.5	530.5	-
Excitation Purity	(A)	61.5	68.5	59.0	
% Luminous Transmit.	(A)	25.2	47.7	26.9	-
x		0.2379	0.3746	0.2772	
y _A		0.6669	0.5777	0.6413	-
Dominant Wave Lgth.	(C)	530.1	552.2	536.3	
Excitation Purity	(C)	68.4	78.3	69.2	
% Luminous Transmit.	(C)	31.5	52.8	32.5	
r		0.2043	0.3164	0.2355	-
AC N		0.6512	0 5988	0.6330	
УС	_	0.0012	5.0000	5.0000	-

-

1

	WAVE LENGTH	PN	ERCENT	TRANSMI No. 58	TTANCE No. 59
	400		0.12	-	-
	10		0.14	-	-
	20		0.16	-	-
-	. 30		0.25		-
	40		0.47	-	-
	50		1.17	-	0.40
	60		3.63	_	1.90
	70		11.1	0.23	7.70
2	80		25.7	1.38	21.0
	90		44.7	4.90	41.5
	500		59.4	17.7	59.0
	10		67.5	38.8	67.7
	20		69.7	52.2	69.8
	30		67.2	53.6	67.2
	40		60.9	47.6	61.5
	50		52.0	38.4	54.0
	60		41.7	27.8	45.0
	70		30.0	17.4	35.0
-	80		18.8	9.0	24.0
	90		9.8	3.50	14.0
	600		4.69	1.50	7.95
-	10		2.22	0.41	4.90
	20		0.92	-	2.70
	30		0.29	_	1.00
	40		-	-	0.17
	50		-	-	-
	60		-	_	_
	70		-	—	0.63
-	80		-	_	4.00
	90		0.32	_	12.0
	700		1.80	0.53	22.6
	Dominant Wave Lgth.	(A)	526.8	538.2	532.3
	Excitation Purity	(A)	53.5	77.0	52.5
	% Luminous Transmit.	(A)	30.8	19.8	32.6
	XA		0.2774	0.2693	0.3028
-	y _A		0.6277	0.6831	0.6118
-	Dominant Wave Lgth.	(C)	533.8	540.3	538.3
	Excitation Purity	(C)	61.8	86.2	63.9
	% Luminous Transmit.	(C)	37.2	23.7	38.7
-	xc		0.2325	0.2425	0.2507
	yc		0.6076	0.6923	0.6023
	20				

58 (B)

57 A

WAVE	н	PERCENT No. 59A	-		
400		0.13		_	
10		0.15	_	_	
20		0.22	_	_	
30		0.39	_	_	
40		0.95	_	_	
50		2 37	0.19		-
60		6.39	1 38		
70		15.0	5.30		-
80		32.5	15.0	0.22	
90		52.5	32.0	4.00	
	_	52.1	52.0	4.00	
500		66.2	48.4	16.6	
10		73.6	57.2	32.3	-
20		75.5	59.2	40.0	
30	-	73.6	55.5	39.6	0
40		69.1	47.5	34.5	
50		62.7	36.8	26.3	-
60		55.2	25.2	17.3	
70		46.1	14.4	9.70	-
80		34.4	6.3	4 40	
90		23.3	1.82	1.66	-
		20.0	1.02	1.00	
600		16.6	0.48	0.38	
10		12.2	0.10	_	-
20		8.3	_	-	
30		4.3		_	
40		1.62	-	-	
50		0.74	-	-	-
60		1.29	-	-	
70		3.98	_		-
80		10.8	_	_	
90		21.3	2.10	_	-
700		31.1	8.70	_	-
Dominant Wave Leth	(A)	536.2	520.0	533.8	-
Excitation Purity	(A)	48.0	59.5	76.5	
% Luminous Transmit.	(A)	<mark>39.5</mark>	20.7	13.7	-
~		0 3300	0 2240	0 2457	-
A		0.5838	0.6616	0.6989	
- YA		0.3838	0.0010	0.0989	
Dominant Wave Lgth.	(C)	541.5	525.7	536.8	-
Excitation Purity	(C)	59.5	62.4	85.3	-
% Luminous Transmit.	(C)	45.8	26.1	16.8	
xc		0.2685	0.1917	0.2213	-
Ve		0.5718	0.6328	0.7053	
	-				-

1

\$

	WAVE LENGTH		PERCENT No. 64	TRANSMI No. 65	TTANCE No. 65A			200	300		400		500		600		700	
-	/00	JU54	0.30	_	_	.19	6 3										÷.	
	10		1.50	-	-													
	20		3.30	-	-							++-		++	+1			
_	30		6.40	-	0.16	NCE NCE	6 2											
	40		11.5	0.20	1.32	MITTA	SITY							++-			5	
-	50		17.8	2.04	5.50	RANSI	DEN											64
	60		26.3	9.0	13.0	₽ 109	6 1										-	
	70		36.5	19.1	24.9									/				
1	80		47.1	27.3	36.6													
	90		55.7	31.9	45.1	1009	6 0	200	300		400	100 1.00	500		600		700	
	500		61.5	33.6	45.8						Stab	ility: C	DA					
1	10		63.1	32.4	39.7													
	20		60.2	28.1	29.7													
-	30		53.7	21.3	17.8													
	40		44.4	13.3	7.90													
	50		29.8	6.6	2.40													
	50		15./	1.82	0.32													
	/0		2.70	0.43	_													
11	00		1.20	_	_	12	20	0	300	1	400		500		600		700	
			1.20			.1~												
	600		-	_	-							++	++					
-	10		-	-	_	1%	2								_			
	20		_	_	_	ANCE												
-	40			_		MITT												65
	50		_		_	RANS												
	60			_		► 10%	1							1				
_	70		-	_	_													
	80		_	-	-													
	90		-	-	0.20	100%	0 20	0	300		400		500		600	and the second	700	
	700		-	-	2.18						Stabil	ity: B	DB					
-	Dominant Wave Lgth.	(A)	503.0	501.3	497.3													
	Excitation Purity	(A)	62.6	74.0	82.0													
-	% Luminous Transmit.	(A)	18.0	6.6	6.2		;	200	300		400		500		600		700	
	x _A		0.1682	0.1215	0.0952	.1%	3			v								
-	<i>y</i> _A		0.5544	0.5200	0.4364													
-	Dominant Wave Lgth.	(C)	<u>497.2</u>	496.6	492.7	ance %	2			•					+		-	
1	Excitation Purity	(C)	55.7	67.8	77.5	ITIMON	DENSITY											65A
-	% Luminous Transmit.	(C)	24.6	9.6	9.8	22 10%	1											Cyan
	Xc		0.1451	0.1116	0.0953		1											
	VC		0.4041	0.4090	0.3483								Ĭ					
		1010				100%	0	200	300	5	400	1	500		600		700	
										36"	Stabi	lity: Cl	DD					

WAVE LENGT	н	PERCEN No. 66	T TRANSM No. 70	No. 72B	-
400		13.2	_	_	
10		13.4	_	_	_
20		14.8	_	_	
30		17.9	-	_	
40		22.8	_	_	
50		30.1	_	_	_
60		41.2	-	-	
70		54.5	_	_	1
80		67.0	-	-	_
90		76.4	-		
500		81.9	-	-	
10		84.2	_	-	
20		84.7	-	-	
30		83.3	-	-	I
40		79.7	-	-	-
50		74.6	-	-	
60		67.6	-	-	
70		58.6	-	-	
80		46.7	-	-	-
90	_	33.8	-	1.26	
600		24.6	-	5.89	
10		19.4	-	5.25	-
20		13.7	-	2.88	
30		7.3	-	1.26	-
40		2.92	-	0.48	
50		1.36	0.63	0.14	
60		1.94	10.5	-	
70		8.4	35.0	-	
80		26.5	55.2	-	_
90		49.7	70.0	-	
700		68.1	79.0	-	
Dominant Wave Lgth.	(A)	511.5	678 <mark>.</mark> 0	605.7	_
Excitation Purity	(A)	26.5	100.0	100.0	
% Luminous Transmit.	(A)	50.6	0.68	1.09	
XA		0.3333	0.7331	0.6506	
y _A		0.5050	0.2668	0.3490	-
Dominant Wave Lgth.	(C)	512.3	676.0	605.0	
Excitation Purity	(C)	21.5	100.0	99.9	-
% Luminous Transmit.	(C)	58.3	0.31	0.74	
xc		0.2486	0.7328	0.6481	
YC		0.4169	0.2672	0.3515	
	-				-

WAVE LENGTH	1	PERCENT No. 76	TRANSM No. 77	ITTANCE No. 77A	-
400		0.22	-	_	
10		0.18	-	-	-
20		0.29	-	-	
30		1.38	-	-	-
40		3.50	-	_	
50		3.50	_	_	-
60		1 92	_	_	
70		0.51	_	_	-
80		0.51			-
90		-	-	-	
500		_	-	-	
10		-	0.30	0.10	
20		7	9.10	5.35	
30		-	13.5	1.90	
40		-	46.1	35.0	
50		-	78.0	71.8	
60		-	75.8	63.1	
70		-	8.00	-	
80		-	1.00	-	-
90		-	0.32	-	
600		-	16.2	1.60	
10		-	52.1	32.1	-
20		-	83.0	78.0	
30		-	84.9	79.5	-
40		-	88.1	86.5	
50		-	89.8	89.2	-
60		-	89.8	89.0	
70		_	85.5	79.5	
80		_	76.1	62.5	
90		0.13	75.0	62.4	
700		1.24	86.5	83.0	
Dominant Wave Lgth.	(A)	448.0	589.8	591.7	-
Excitation Purity	(A)	98.0	98.0	98.5	
% Luminous Transmit.	(A)	0.015	5 36.8	29.4	
r.		0.1628	0.5715	0.5832	-
y_A		0.0220	0.4254	0.4143	-
Dominant Wave Lgth.	(C)	449.3	579.9	581.5	
Excitation Purity	(C)	98.6	98.9	99.1	
% Luminous Transmit.	(C)	0.046	6 32.3	25.5	
re		0.1578	0.5099	0.5208	-
NC		0.0181	0.4854	0.4753	
УС	-		5.1004	5.1700	-

The second

ï

.

WAV LENG	E PERCENT TRANSMITT TH No. 79	TANCE 200 300 400 500 600 700
400	24.0	.1% 3
10	26.0	
20	29.0	
30	31.0	
40	32.2	
50	32.7	INTERPENDENT
60	31.4	
70	28.8	
80	25.6	
90	22.2	
500	19.3	200 300 400 500 600 700
10	16.8	Stability: AAA
20	14.2	
30	12.7	
40	11.8	
50	11.0	
60	9.76	Filters 78, 78AA, 78A, 78B,
70	8.81	78C
80	8.50	See nage 54
90	8.29	Filters 80A 80B 80C 80D
600	7.56	See page 56
10	6.45	Filters 81 814 818 81C 81D
20	5.13	
30	4.17	81EF
40	3.47	See page 58
50	3.16	Filters 82 824 828 820
60	3.09	Cas a ser 50
70	3.16	See page 58
80	3.16	Filters 85,85B, 85C, 85N3,
90	3.16	85N6
700	3.31	See page 56
Dominant Wave Lgth.	(A) 485.9	Filters 86, 86A, 86B, 86C See page 54
Excitation Purity	(A) 36.5	
% Luminou Transmit.	^s (A) 9.6	
XA	0.3085	
y _A	0.3378	
Dominant Wave Lgth.	(C) 474.8	
Excitation Purity	(C) 52.7	
% Luminous Fransmit.	° (C) 11.3	
x _C	0.2047	
0	0.10.10	

A Filters 87 87A 87B 87C 88A No Transmittance 400-700 See page 70 30			WAVE LENGTH	PERCENT No. 89B	TRANSMITTANCE No. 90	
A Filters 87 87A 87B 87C 88A No Transmittance 400-700 See page 70 1^{15} 0^{10} 0^{10} 0^{10} 0^{10} 0^{10} 0^{10} 1^{10} 1^{15} 0^{10} 0^{10} 0^{10} 0^{10} 0^{10} 0^{10} 0^{10} 1^{10} 1^{10} $-$ 1^{10} $-$ 1			400	_	_	
A Filters 87 87A 87B 87C 88A No Transmittance 400-700 See page 70 B $\frac{1}{10}$ $\frac{1}{11}$ $\frac{1}{10}$			10	- :	-	
A Filters 87 87A 87B 87C 88A No Transmittance 400-700 See page 70 1^{3} $\frac{30}{90}$ $ -$ 88A No Transmittance 400-700 See page 70 1^{3} $\frac{30}{90}$ $ -$ 1^{3} $\frac{30}{90}$ $ -$ 1^{3} $\frac{30}{90}$ $ -$ 1^{3} $\frac{30}{90}$ $ -$ 1^{3} $\frac{1}{90}$ $ -$ 1^{3}			20	-	-	
Filters 87 87A 87B 87C 88A No Transmittance 400-700 See page 70 30			30	-	-	
Filters 87 87A 87B 87C 88A No Transmittance 400-700 See page 70 30 50 30 50 30 50 2.24 40 0.41 700 - 11.2 - 51.9 $\overline{700} - 11.2 - 51.9$ $\overline{700} - 11.2 - 51.9$ $\overline{710}$ 55.6 $\overline{50} 2.30$ 55.6 $\overline{50} 2.30$ 55.6 $\overline{50} 2.30$ $\overline{70} - 583.2$ $\overline{50} 2.30$ $\overline{70} - 583.2$ $\overline{50} 2.30$ $\overline{70} - 11.6$ $\overline{74 \operatorname{mannit.}}$ (0 - 9.9,9 $\overline{74 \operatorname{mannit.}}$ $\overline{70} - 9.8$ $\overline{70} - 0.5329$ $\overline{70} - 0.532$			40	-		
Filters 87 87A 87B 87C 88A No Transmittance 400-700 See page 70 30 =			50	-	-	
Filters 87 87A 87B 87C 88A No Transmittance 400-700 See page 70 30 500 10 20 500 50 500 50 252 $\overline{000} - 11.3$ 20 - 7.40 30 - 2.94 40 - 0.76 50 - 0.29 60 - 0.41 70 - 2.30 80 0.10 9.52 90 1.58 28.5 $\overline{700 11.2 51.9}$ $\overline{11.4 3}$ $\overline{700 11.2 51.9}$ $\overline{710 11.6}$ $\overline{74 \text{ minits}}$ (A) 70 11.6 $\overline{74 \text{ minits}}$ $\overline{70 0 11.2 51.9}$ $\overline{74 \text{ minits}}$ $\overline{70 0 11.6}$ $\overline{74 \text{ minits}}$ $\overline{74 \text{ minits}}$ $\overline{70 0 11.2 51.9}$ $\overline{74 \text{ minits}}$ $\overline{70 0 11.6}$ $\overline{74 \text{ minits}}$ $\overline{70 0 11.6}$ $\overline{74 \text{ minits}}$ $\overline{70 0 11.6}$ $\overline{74 \text{ minits}}$ $\overline{70 0 11.6}$ $\overline{74 \text{ minits}}$ $\overline{70 0 0.6}$ $\overline{74 \text{ minits}}$ $\overline{70 0 0.6}$ $\overline{70 0 0.6}$ $\overline{70 0 0.6}$ $\overline{70 0 0.6}$			60	-	-	
		Filters 87	70	-	-	
		874	80	-	-	
		078	90	-	-	
		87B				-
$ \frac{88A}{No Transmittance 400.700} See page 70 $ $ \frac{10}{50} $ $ \frac{20}{50} $ $ \frac{10}{50} $ $ \frac{10}{50}$		87C	500	-	-	
No Transmittance 400-700 See page 70 30 $ -30$ $ -50$ $ -2.9440$ $ -70$ $ 2.3080$ $ 11.251.9\overline{700} 11.2 51.9\overline{700} 11.2 51.9\overline{700} 11.2 51.9\overline{700} 11.2 51.9\overline{700} 11.2 51.9\overline{700} 11.6\overline{70} -\frac{7}{40} 11.6\overline{70} -\overline{70} -\overline{70}$		88A	10	-	-	
No Transmittance 400-700 See page 70 30 = - 40 = - 50 = - 60 = 9.00 70 = 30.5 80 = -34.3 90 = -25.2 $\overline{600} = -16.1$ 10 = -11.3 20 = -7.40 30 = -2.94 40 = 60 = -34.3 20 = -7.40 30 = -2.94 40 = -7.40 30 = -2.94 40 = -0.76 50 = -0.29 60 = -0.41 70 = -2.30 80 = 0.10 90 = 1.58 2.55 $\overline{700} = 11.2$ 51.9 $\overline{700} = 11.2$ 51.9 $\overline{700} = 11.2$ 51.9 $\overline{700} = 11.2$ $\overline{700} = -2.30$ 80 = 0.10 90 = 1.58 25.5 $\overline{700} = 11.2$ $\overline{700} = -2.94$ 40 = -0.76 $\overline{50} = -0.29$ 60 = -0.41 70 = -2.30 80 = 0.10 90 = 1.58 25.5 $\overline{700} = 11.2$ $\overline{700} = 11.2$ $\overline{700} = -2.30$ $\overline{700} = -2.52$ $\overline{700} = -2.52$		No. Tree and itter and 400, 700	20	-	-	
See page 70 40 50 - 50 - 740 - 30 - 2.94 40 - 0.76 50 - 0.29 60 - 0.41 70 - 2.30 80 0.10 9.52 90 1.58 28.5 700 11.2 51.9 $\frac{11}{70}$ - $\frac{11}{70}$ - 2.30 80 0.10 9.52 90 1.58 28.5 $\frac{11}{70}$ - $\frac{11}{70}$ - $\frac{11}{70$		No Transmittance 400-700	30	-	-	
$\int_{13}^{13} \int_{13}^{20} \int_{10}^{300} \int_{10}^{400} \int_{10}^{500} \int_{10}^{400} \int_{10}^{700} \int_{10}^{700} \int_{10}^{700} \int_{10}^{700} \int_{11.3}^{700} \int_{11.3}^{700} \int_{11.3}^{700} \int_{11.2}^{700} \int_{11.2}^{700} \int_{11.2}^{700} \int_{11.6}^{100} \int_{11.6}^{700} \int_{11.6}^{11.6} \int_{10}^{700} \int_{11.6}^{700} \int_{11.6}^{11.6} \int_{10}^{700} \int_{11.6}^{700} \int_{11.6}^{700$		See page 70	40	-	-	
$ \int_{12}^{12} \int_{12}^{20} \int_{10}^{30} \int_{10}^{400} \int_{10}^{500} \int_{10}^{600} \int_{10}^{700} \int_{10}^{10} \int_{10}^{10} \int_{10}^{11} \int_{10}^{10} \int_{10}^{10}$			50	-	-	
$ \begin{array}{c} 70 & - & 30.5 \\ 80 & - & 34.3 \\ 90 & - & 25.2 \\ \hline 600 & - & 16.1 \\ 10 & - & 11.3 \\ 20 & - & 7.40 \\ 30 & - & 2.94 \\ 40 & - & 0.76 \\ 50 & - & 0.29 \\ 60 & - & 0.41 \\ 70 & - & 2.30 \\ 80 & 0.10 & 9.52 \\ 90 & 1.58 & 28.5 \\ \hline \hline 700 & 11.2 & 51.9 \\ \hline $			60	_	9.00	
$ \frac{300}{100} + \frac{300}{100} +$			70	_	30.5	
$\begin{array}{c} 300 & 300 & 400 & 500 & 600 & 700 \\ 100 & 10 & 10 & 11.3 \\ 20 & - & 7.40 \\ 30 & - & 2.94 \\ 40 & - & 0.76 \\ 50 & - & 0.29 \\ 60 & - & 0.41 \\ 70 & - & 2.30 \\ 80 & 0.10 & 9.52 \\ 90 & 1.58 & 28.5 \end{array}$			80	_	34.3	
$ \begin{array}{c} $	200	300 400 500 600 700	90	-	25.2	
$\begin{array}{c} 10 & - & 11.3 \\ 20 & - & 7.40 \\ 30 & - & 2.94 \\ 40 & - & 0.76 \\ 50 & - & 0.29 \\ 60 & - & 0.41 \\ 70 & - & 2.30 \\ 80 & 0.10 & 9.52 \\ 90 & 1.58 & 28.5 \end{array}$			600	_	16.1	-
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 20 & - & 7.40 \\ 30 & - & 2.94 \\ 40 & - & 0.76 \\ 50 & - & 0.29 \\ 60 & - & 0.41 \\ 70 & - & 2.30 \\ 80 & 0.10 & 9.52 \\ 90 & 1.58 & 28.5 \end{array}$			10	-	11.3	
$\begin{array}{c} 30 & - & 2.94 \\ 40 & - & 0.76 \\ 50 & - & 0.29 \\ 60 & - & 0.41 \\ 70 & - & 2.30 \\ 80 & 0.10 & 9.52 \\ 90 & 1.58 & 28.5 \end{array}$	H 1% 2		20	-	7.40	
$ \begin{array}{c} $	ANG		30		2.94	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	TISN		40	_	0.76	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DEP		50	_	0.29	
$100 \times 0 = 200$ 300 400 500 600 700 Stability: AAA $70 = 1.2 \times 30$ 90 1.58 28.5 $700 = 1.2 \times 51.9$ $700 = 11.2 \times 51.9$ $700 =$	P 10% 1		60	_	0.41	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			70		2 30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			80	0.10	9.52	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100% 0		90	1.58	28.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	300 400 500 600 700 Stability: AAA	700	11.2	51.9	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Dominant Wave Lgth.	A) See	585.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Excitation Purity	A) page	100.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	300 400 500 600 700	% Luminous Transmit.	A) 70	11.6	
$\frac{y_A}{y_A} = \frac{y_A}{0.4507}$ $\frac{y_A}{y_A} = \frac{y_A}{0.4507}$ $\frac{y_A}{y_A} = \frac{y_A}{0.4507}$ $\frac{y_A}{y_A} = \frac{y_A}{0.4507}$ $\frac{y_A}{y_A} = \frac{y_B}{0.4507}$ $\frac{y_B}{y_B} = \frac{y_B}{0.5329}$ $\frac{y_B}{y_C} = \frac{y_B}{0.4662}$.1% 3		XA		0.5484	1
$\frac{11}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$			y _A		0.4507	
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	1% 2		Dominant Wave Lgth.	C)	583.2	1
$\frac{2}{1000}$ 1 $\frac{1}{1000}$ 1 $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{1000}$ $\frac{1}{1000$	ASMITTA DENSITY		Excitation Purity (C)	99.9	
$x_{\rm C}$ 0.5329 $y_{\rm C}$ 0.4662			% Luminous Transmit.	C)	9.8	1
$x_{\rm C}$ 0.329 $y_{\rm C}$ 0.4662			~		0 5329	
$\gamma_{\rm C}$ 0.4002	-		xC		0.4662	
	100% 0		УC		0.4002	

-

WA	VE GTH	PERCENT No. 92	TRANSM No. 93	No. 94									
40	0	-	_	-	.1%	200	3	300	400	500	600	700	
1	0	-	-	-									
2	20	-	-	-									
3	0	-	-	1.2	1%	2							
4	0	-	-	4.9	TANC								
5	0	-	_	8.5	SMIT	NSIT							92
6	0	-	_	8.3	RAN	DE							
7	0	-	-	4.7	► 10%	1							
8	0	-		1.4									
	0		-	0.3									
50	0	· _	_	_	100%	0							
1	0	_	_	_		200		300	400	500	600	700	
2	20	-	1.05	_					Stabili	ty: ABB			
3	80	-	4.07	—									
4	10	-	6.02	_									
:	50	_	4.37	_									
E	60	_	2.00	_									
7	70	-	0.68	_									
1	30	-	0.24	-		200		300	400	500	600	700	
9	90	-	-	-	.1%	3							
60	0	-	-	_									
	20	0.40	_	_	بي ا%	2							
	30	17.4	_		TAN	*							
	10	51.2	_	_	SMIT	NSIT							93
	50	72.2		_)	RAN	DE							
	50	80.7	_	_	L 10%	1							
	70	84.8	_	_									
	80	86.5	_	_									
	90	87.4		_	100%	0							
70)0	88.0	-	_		200	3	300	400 Stabilit	500 Iy: ABB	600	700	
Dominan Wave Lgt	t (A) 646.2	544.8	460.2									
citatio rity	on (A) 100.0	95.5	99.3									
% Lumin Transmit	nous (A) 4.8	1.4	0.06		200	3	100	400	500	600	700	
r		0.7237	0.2729	0.1459	.1%	3							
v	A	0.2763	0.7110	0.0324									
5	A												
ominan Vave Lgt	t :h. (C	645.2	544.8	458.0	IANCE 34	2							
Excitatio Purity	^{on} (C	;) 99.9	98.0	99.3	ANSMIT	DENSIT							94
% Lumin Transmit	nous (C	3) 2.6	1.6	0.19	¹¹ 10%	1							
x	C	0.7231	0.2655	0.1483									
у	C	0.2768	0.7173	0.0289									
					100%	0 200			100				

Stability: AAA

WAVE LENGTH	1	PERCENT No. 96	TRANSM No. 97	ITTANCE No. 98	-
400		4.28	-	6.1	
10		4.91	-	17.2	-
20		5.50	-	31.7	
30		6.17	-	40.0	1
40		6.92	-	39.7	-
50		7.50	-	32.5	
60		7.81	-	21.7	
70		8.15	0.22	11.2	
80		8.47	0.43	3.8	-
90		8.60	0.39	0.7	_
500		8.73	0.15	-	
10		8.85	-	-	-
20		8.90	_		
30		9.01	-	-	-
40		9.07	-	-	
50		9.20	-	-	
60		9.30	-	-	
70		9.20	-	-	
80		9.19	-	-	-
90		9.54	-	- 1	
600		9.64	-	-	0
10		9.73	-	-	-
20		9.56	-	-	
30		9.27	-		-
40		9.10	-	-	
50		9.07	-	-	
60		9.00	-		
70		9.13	-	-	
80		9.08	0.44	-	-
90		9.21	5.02	-	
700		9.52	18.7	-	
Dominant Wave Lgth.	(A)	582.5	516.0c	452.0	
Excitation Purity	(A)	15.5	83.0	99.4	
% Luminous Transmit.	(A)	9.2	0.06	0.19	_
xA		0.4602	0.60	0.1553	
y _A		0.4170	0.25	0.0216	-
Dominant Wave Lgth.	(C)	572.7	540.0c	449.7	
Excitation Purity	(C)	12.1	46.0	99.3	_
% Luminous Transmit.	(C)	9.1	0.04	0.66	
re		0.3286	0.33	0.1577	-
Ve		0.3430	0.21	0.0187	
					-

-

	WAVE LENGT	4	PERCENT No. 99	TRANSM No. 102	No. 106	
	400		_	2.0	-	
	10		-	1.6	-	
	20		-	1.3	0.10	
-	30		-	1.4	0.20	5
	40		-	1.7	0.35	TAN
-	50		_	2.5	0.58	TIM D
	60		_	4.3	0.98	
-	70		_	7.6	1.5	
	80		_	12.6	23	
	90		-	19.5	3.5	
	500		_	28.7	5.2	
1	10		-	39.4	7.7	
	20		1.12	50.3	10.7	
_	30		7.95	59.2	15.1	
	40		18.6	64.8	20.2	
and	50		19.9	67.2	25.7	
	60		15.1	66.8	31.0	
-	70		87	63.6	35.6	
	80		3.80	58.2	43.2	
	90		1.12	51.6	53.8	
	600		0.22	43.9	65.6	
	10		-	36.5	77.0	
	20		-	29.8	82.8	
_	30		_	24.3	86.0	
	40		-	19.8	87.6	
-	50		_	16.7	88.7	
	60		-	14.3	89.5	
-	70		_	13.0	90.0	
	80			12.0	90.5	
	90		-	11.4	90.8	
	700		-	11.0	91.0	
-	Dominant Wave Lgth.	(A)	554.6	571.5	596.1	
	Excitation Purity	(A)	96.5	77.5	96.5	
	% Luminous Transmit.	(A)	6.4	50.2	43.2	
	r.		0.3384	0.4534	0.6019	
-	y_A		0.6530	0.5132	0.3916	
	Dominant Wave Lgth.	(C)	553.6	564.9	589.3	
-	Excitation Purity	(C)	98.7	79.9	95.1	
	% Luminous Transmit.	(C)	7.0	50.8	34.4	
-	xo		0.3268	0.3882	0.5583	
	No.		0.6637	0.5355	0.4228	

WAVE LENGTH		No. 78	No. 78AA	No. 78A	PERCEN No. 78B	NT TRANSMI No. 78C	TTANCE No. 86	No. 86A	No. 86B	No. 86C
400		36.5	42.7	57.5	68.9	79.1	0.50	8.00	20.0	44.0
10		40.4	46.1	60.2	70.9	80.2	0.81	12.2	26.1	55.0
20		43.6	49.4	62.6	72.5	81.2	1.55	16.7	31.6	62.0
30		44.1	50.0	63.3	72.9	81.6	2.88	21.5	37.5	66.6
40		43.2	49.4	63.1	72.8	81.8	5.50	27.8	44.0	70.8
50		40.9	47.4	61.5	71.8	81.6	9.10	34.2	50.1	74.3
60		36.7	43.6	58.5	69.8	80.9	13.5	40.4	55.4	76.8
70		31.6	38.5	54.6	67.0	79.7	17.8	45.0	59.5	78.7
80		26.4	33.1	50.5	63.9	78.5	21.3	48.7	62.5	80.2
90		21.7	28.4	46.1	60.8	76.9	24.5	51.2	64.6	81.2
500		18.0	24.4	42.4	57.7	75.4	26.8	52.8	66.0	81.7
10		14.9	21.1	38.6	54.9	73.9	27.9	53.4	66.4	81.9
20		12.6	18.2	35.4	52.2	72.6	28.6	53.7	66.6	82.0
30		11.0	16.2	33.3	50.2	71.7	30.4	55.0	67.6	82.4
40		10.0	15.1	31.9	49.0	71.1	32.5	56.5	69.0	83.0
50		9.1	13.8	30.5	47.7	70.5	35.0	58.5	70.2	83.5
60		8.1	12.6	28.9	46.1	69.7	41.2	63.0	73.0	84.6
70		7.4	11.6	27.6	44.9	69.0	53.0	70.9	78.1	86.8
80		7.2	11.1	27.3	44.4	68.8	67.5	79.0	84.0	88.9
90		6.9	10.8	27.0	44.1	68.9	76.5	85.2	87.5	89.9
600		6.2	10.0	26.0	43.0	68.2	85.0	88.1	89.3	90.6
10		5.2	8.8	24.2	41.2	67.0	88.1	89.8	90.3	91.0
20		4.2	7.4	22.0	38.9	65.5	89.6	90.5	90.7	91.1
30		3.4	6.0	19.9	36.7	64.0	90.4	90.8	90.9	91.2
40		2.9	5.1	18.4	35.2	63.1	90.7	91.1	91.1	91.3
50		2.6	4.8	17.7	34.6	62.8	91.0	91.2	91.2	91.4
60		2.6	4.9	17.8	34.8	62.8	91.1	91.3	91.3	91.5
70		2.7	5.0	18.1	35.1	63.0	91.2	91.4	91.4	91.6
80		2.7	4.9	18.2	35.2	63.0	91.3	91.4	91.5	91.6
90		2.6	4.8	18.0	35.4	63.2	91.3	91.5	91.6	91.6
700		2.8	5.0	18.4	36.4	64.1	91.3	91.5	91.6	91.6
Dominant Wave Lgth.	(A)	482.0	484.6	486.8	488.5	491.1	593.6	590.7	589.0	587.7
Excitation Purity	(A)	45.0	37.0	19.5	11.5	3.5	76.0	46.0	31.5	13.0
% Luminous Transmit.	(A)	8.8	13.5	29.1	44.4	69.2	57.8	72.2	78.9	86.8
$\begin{array}{c} x_{\mathrm{A}} \\ y_{\mathrm{A}} \end{array}$		0.2836 0.2953	0.3083 0.3288	0.3715 0.3736	0.4029 0.3916	0.4330 0.4044	0.5607 0.4045	0.5083 0.4132	0.4859 0.4145	0.4618 0.4112
Dominant Wave Lgth.	(C)	471.0	473.6	476.4	477.3	479.8	585.8	580.7	579.5	577.7
Excitation Purity	(C)	63.1	54.4	33.7	20.7	6.7	69.6	36.0	24.2	9.0
% Luminous Transmit.	(C)	10.7	15.8	31.6	46.7	70.4	49.6	67.1	75.5	85.4
$x_{\rm C}$ $y_{\rm C}$		0.1911 0.1563	0.2035 0.1857	0.2418 0.2406	0.2670 0.2725	0.2954 0.3039	0.4773 0.4093	0.3849 0.3757	0.3584 0.3582	0.3270 0.3330

KODAK WRATTEN PHOTOMETRIC FILTERS 78 Series (Bluish)

78

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	WAVE		No. 904		PE No. 800				No. 950	N- 05N2	
10063.563.671.071.071.86.01.3918.01.3218.01.781.012072.673.777.181.228.415.544.112.36.53073.574.577.781.633.419.047.314.88.04072.473.676.981.226.220.849.216.49.05070.271.275.280.238.122.150.617.69.86066.968.072.778.840.424.352.519.010.67062.864.169.677.043.027.555.321.011.88058.059.265.774.845.330.957.022.712.89053.054.061.772.347.234.358.624.413.91042.543.753.466.948.938.360.526.214.91042.543.753.466.051.043.263.029.017.06026.529.942.659.255.847.167.031.118.22038.239.453.269.075.068.181.639.922.79022.227.940.658.083.078.186.443.324.41020.125.937.455.587.1	400	· · · ·	62 C	CE C	71.0	77.0	0.85	1.50	10.050	1 70	1.01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	400		69.0	70.2	71.0	77.8	b.U	1.59	18.0	1./8	1.01
20 72.5 73.5 77.1 81.2 28.4 15.5 44.1 12.3 6.5 30 73.5 77.5 81.6 33.4 19.0 47.3 14.8 8.0 40 72.4 73.6 76.9 81.2 36.2 20.8 49.2 16.4 9.0 50 70.2 71.2 75.2 80.2 38.1 22.1 50.6 17.6 9.8 60 66.9 62.7 78.8 40.4 24.3 52.5 32.10 11.8 80 58.0 59.2 65.7 74.8 45.3 30.9 57.0 22.7 12.8 90 50.0 47.7 48.8 57.6 69.7 48.9 38.3 60.5 26.2 14.9 10 42.5 43.7 53.4 66.0 51.0 48.3 40.7 60.6 27.0 15.5 20 38.2 39.4 50.2 64.6 48.2 <th< th=""><th>10</th><th></th><th>08.9 70.6</th><th>70.2</th><th>74.0</th><th>79.9</th><th>18.0</th><th>9.32</th><th>35.5</th><th>1.5</th><th>3.9</th></th<>	10		08.9 70.6	70.2	74.0	79.9	18.0	9.32	35.5	1.5	3.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20		72.0	73.7	77.1	81.2	28.4	15.5	44.1	12.3	6.5
40 72.4 73.5 70.2 71.2 75.2 80.2 38.1 22.1 50.6 17.6 9.0 50 66.9 68.0 72.7 78.8 40.4 24.3 52.5 19.0 10.6 70 62.8 64.1 69.6 77.0 43.0 27.5 55.3 21.0 11.8 80 58.0 59.2 65.7 74.8 45.3 30.9 57.0 22.7 12.8 90 53.0 54.0 61.7 72.3 47.2 34.3 58.6 24.4 13.9 10 42.5 43.7 53.4 66.9 49.2 40.7 60.6 27.4 15.9 20 38.2 39.4 50.2 64.6 48.2 40.6 60.0 27.4 15.9 40 31.3 33.5 45.7 61.5 49.2 41.6 61.6 28.1 16.4 50 28.4 31.2 43.6 <	30		73.5	74.5	77.7	81.6	33.4	19.0	47.3	14.8	8.0
30 $h.2$	40		72.4	/3.6	76.9	81.2	36.2	20.8	49.2	16.4	9.0
b0 b0.3 b0.3 b0.4 b0.5 b0.6 f7.0 43.0 52.5 f5.3 b0.1 l1.8 s0 53.0 54.0 61.7 72.3 47.2 34.3 58.6 24.4 l1.3 g0 s0 42.5 43.7 53.4 66.9 70.7 48.9 38.3 60.5 26.2 14.4 s0 28.4 43.7 43.6 40.3 40.7 60.6 27.4 15.9 40 31.3 33.5 45.7 61.5 49.2 41.6 61.6 28.1 16.4 50 28.4 31.2 43.6 60.0 50.7 71.8 86.4 43.3 22.4 50 22.2 29.9	50		70.2	/1.2	75.2	80.2	38.1	22.1	50.6	17.6	9.8
No b2.8 b4.1 b9.6 77.0 43.0 27.5 55.3 21.0 11.8 80 53.0 54.0 61.7 72.3 47.2 34.3 58.6 24.4 13.9 500 47.7 48.8 57.6 69.7 48.9 38.3 60.5 26.2 14.9 10 42.5 43.7 53.4 66.9 49.2 40.7 60.6 27.0 15.5 20 38.2 39.4 50.2 64.6 48.2 40.6 60.0 27.1 15.6 30 34.6 36.3 47.7 63.0 48.3 40.7 60.6 27.4 15.9 40 31.3 33.5 45.7 61.5 49.2 41.6 61.6 28.1 16.4 50 28.4 31.2 43.6 60.0 51.0 43.1 35.2 20.3 60 26.5 29.9 42.6 59.0 75.0 68.1	60		66.9	68.0	12.1	/8.8	40.4	24.3	52.5	19.0	10.6
80 58.0 59.2 65.7 74.8 45.3 30.9 57.0 22.7 12.8 90 53.0 54.0 61.7 72.3 47.2 34.3 58.6 24.4 13.9 500 47.7 48.8 57.6 69.7 48.9 38.3 60.5 26.2 14.9 20 38.2 39.4 50.2 64.6 48.2 40.7 60.6 27.0 15.5 20 38.2 39.4 50.2 64.6 48.2 40.6 60.0 27.1 15.6 30 34.6 36.3 47.7 63.0 48.3 40.7 60.6 27.4 15.9 40 31.3 33.5 45.7 61.5 49.2 41.6 61.6 62.8 29.0 17.0 60 26.2 29.9 42.6 59.2 55.8 47.1 67.0 31.1 18.2 90 22.2 27.9 40.5 58.0	70		62.8	64.1	69.6	//.0	43.0	27.5	55.3	21.0	11.8
9053.054.061.772.347.234.358.624.413.950047.748.857.669.748.938.360.526.214.91042.543.753.466.949.240.760.627.015.52038.239.450.264.648.240.660.027.115.63034.636.347.763.048.340.760.627.415.94031.333.545.761.549.241.661.628.116.45028.431.243.660.051.043.263.029.017.06026.529.942.659.255.847.167.031.118.27025.229.442.659.075.068.181.639.922.79022.227.940.658.083.078.186.443.324.460020.826.838.856.787.285.088.845.025.11020.125.933.453.290.790.790.345.525.02019.324.835.854.490.089.690.345.324.53018.523.533.153.290.790.790.844.823.85017.922.233.153.290.990.994.923.7 <th>80</th> <th></th> <th>58.0</th> <th>59.2</th> <th>65.7</th> <th>74.8</th> <th>45.3</th> <th>30.9</th> <th>57.0</th> <th>22.7</th> <th>12.8</th>	80		58.0	59.2	65.7	74.8	45.3	30.9	57.0	22.7	12.8
	90		53.0	54.0	61.7	72.3	47.2	34.3	58.6	24.4	13.9
1042.543.753.466.949.240.760.627.015.52038.239.450.264.648.240.760.627.115.63034.636.347.763.048.340.760.627.415.94031.333.545.761.549.241.661.628.116.45028.431.243.660.051.043.263.029.017.06026.529.942.659.255.847.167.031.118.27025.229.442.459.364.556.074.135.220.38023.728.942.059.075.068.181.639.922.79022.227.940.658.083.078.186.443.324.460020.125.937.455.588.988.089.945.525.02019.324.835.854.490.089.690.345.324.53018.523.534.553.690.590.390.644.023.76018.322.433.153.290.790.644.823.87018.622.533.253.391.091.091.045.023.88018.221.932.752.791.091.391.145.023.8 <th>500</th> <th></th> <th>47.7</th> <th>48.8</th> <th>57.6</th> <th>69.7</th> <th>48.9</th> <th>38.3</th> <th>60.5</th> <th>26.2</th> <th>14.9</th>	500		47.7	48.8	57.6	69.7	48.9	38.3	60.5	26.2	14.9
20 38.2 39.4 50.2 64.6 48.2 40.6 60.0 27.1 15.6 30 34.6 36.3 47.7 63.0 48.3 40.7 60.6 27.4 15.9 40 31.3 33.5 45.7 61.5 49.2 41.6 61.6 28.1 16.4 50 28.4 31.2 43.6 60.0 51.0 43.2 63.0 29.0 17.0 60 25.2 29.9 42.6 59.2 55.8 47.1 67.0 31.1 18.2 70 25.2 29.4 42.4 59.0 75.0 68.1 81.6 39.9 22.7 90 22.2 27.9 40.6 58.0 88.0 89.9 45.5 25.0 20 19.3 24.8 35.8 54.4 90.0 89.6 90.3 45.5 25.0 20 19.3 24.8 35.2 90.7 90.3 45.5	10		42.5	43.7	53.4	66.9	49.2	40.7	60.6	27.0	15.5
30 34.6 36.3 47.7 63.0 48.3 40.7 60.6 27.4 15.9 40 31.3 33.5 45.7 61.5 49.2 41.6 61.6 28.1 16.4 50 28.4 31.2 43.6 60.0 51.0 43.2 63.0 29.0 17.0 60 26.5 29.9 42.6 59.2 55.8 47.1 67.0 31.1 18.2 70 25.2 29.4 42.0 59.0 75.0 68.1 81.6 39.9 22.7 90 22.2 27.9 40.6 58.0 83.0 78.1 86.4 43.3 24.4 600 20.8 26.8 38.8 56.7 87.2 85.0 88.8 45.0 25.1 20 19.3 24.8 35.8 53.4 50.2 90.3 90.6 45.0 24.0 40 17.9 22.2 33.1 53.2 90.7 90.7 90.8 44.8 23.8 50 17.9 22.2 33	20		38.2	39.4	50.2	64.6	48.2	40.6	60.0	27.1	15.6
40 31.3 33.5 45.7 61.5 49.2 41.6 61.6 28.1 16.4 50 28.4 31.2 43.6 60.0 51.0 43.2 63.0 29.0 17.0 60 26.5 29.9 42.6 59.2 55.8 47.1 67.0 31.1 18.2 70 25.2 29.4 42.4 59.3 64.5 56.0 74.1 35.2 20.3 80 23.7 28.9 42.0 59.0 75.0 68.1 81.6 39.9 22.7 90 22.2 27.9 40.6 58.0 83.0 78.1 86.4 43.3 24.4 600 20.8 26.8 38.8 56.7 87.2 85.0 88.8 45.0 25.1 30 18.5 23.5 34.4 53.2 90.5 90.3 90.4 45.0 23.8 30 18.5 23.2 33.1 53.5 90.9	30		34.6	36.3	47.7	63.0	48.3	40.7	60.6	27.4	15.9
50 28.4 31.2 43.6 60.0 51.0 43.2 63.0 29.0 17.0 60 26.5 29.9 42.6 59.2 55.8 47.1 67.0 31.1 18.2 70 25.2 29.4 42.4 59.3 64.5 56.0 74.1 35.2 20.3 80 23.7 28.9 42.0 59.0 75.0 68.1 81.6 39.9 22.7 90 22.2 27.9 40.6 58.0 83.0 78.1 86.4 43.3 24.4 600 20.8 26.8 38.8 56.7 87.2 85.0 88.8 45.0 25.1 10 20.1 25.9 37.4 55.5 88.9 88.0 89.9 45.5 25.0 20 19.3 24.8 35.8 54.4 90.0 89.6 90.3 46.3 23.7 30 17.9 22.5 33.4 53.2 90.9	40		31.3	33.5	45.7	61.5	49.2	41.6	61.6	28.1	16.4
60 26.5 29.9 42.6 59.2 55.8 47.1 67.0 31.1 18.2 70 25.2 29.4 42.4 59.3 64.5 56.0 74.1 35.2 20.3 80 23.7 28.9 42.0 59.0 75.0 68.1 81.6 39.9 22.7 90 22.2 27.9 40.6 58.0 83.0 78.1 86.4 43.3 24.4 600 20.8 26.8 38.8 56.7 87.2 85.0 88.8 45.0 25.1 20 19.3 24.8 35.8 54.4 90.0 89.6 90.3 90.6 45.0 24.0 40 17.9 22.2 33.4 53.2 90.7 90.8 44.8 23.8 50 17.9 22.2 33.1 53.2 90.9 90.9 90.9 44.9 23.7 60 18.2 21.9 32.7 52.7 91.0	50		28.4	31.2	43.6	60.0	51.0	43.2	63.0	29.0	17.0
70 25.2 29.4 42.4 59.3 64.5 56.0 74.1 35.2 20.3 80 23.7 28.9 42.0 59.0 75.0 68.1 81.6 39.9 22.7 90 22.2 27.9 40.6 58.0 83.0 78.1 86.4 43.3 24.4 600 20.8 26.8 38.8 56.7 87.2 85.0 88.8 45.0 25.1 20 19.3 24.8 35.8 54.4 90.0 89.6 99.9 45.5 25.0 30 18.5 23.3 45.3 24.5 33.4 53.2 90.7 90.8 44.8 23.8 50 17.9 22.2 33.1 53.2 90.7 90.8 44.8 23.8 60 18.3 22.4 33.1 53.5 91.0 91.0 91.0 45.0 23.7 90 17.5 21.2 31.9 52.7 91.0	60		26.5	29.9	42.6	59.2	55.8	47.1	67.0	31.1	18.2
8023.728.942.059.075.068.181.639.922.79022.227.940.658.083.078.186.443.324.460020.826.838.856.787.285.088.845.025.11020.125.937.455.588.988.089.945.525.02019.324.835.854.490.089.690.345.324.53018.523.534.553.690.590.390.645.024.04017.922.533.453.290.790.790.844.823.85017.922.233.153.290.990.990.944.923.76018.322.433.153.591.091.091.045.023.87018.622.533.253.391.091.291.145.023.79017.521.231.952.691.091.391.145.323.970017.721.432.153.891.091.391.145.323.970017.721.432.153.891.091.391.145.323.970017.721.432.153.891.091.391.145.323.970017.721.432.153.895.0593.8593.259	70		25.2	29.4	42.4	59.3	64.5	56.0	74.1	35.2	20.3
9022.227.940.658.083.078.186.443.324.460020.826.838.856.787.285.088.845.025.11020.125.937.455.588.988.089.945.525.02019.324.835.854.490.089.690.345.324.53018.523.534.553.690.590.390.645.024.04017.922.533.453.290.990.990.944.923.76018.322.433.153.591.091.091.045.023.87018.622.533.253.391.091.291.145.023.88018.221.932.752.791.091.391.145.023.79017.521.231.952.691.091.391.145.323.970017.721.432.153.891.091.391.145.323.970017.721.432.153.891.091.391.145.323.970017.721.432.153.891.091.391.145.323.970017.721.432.153.891.091.391.145.323.970017.721.432.153.891.091.391.145.	80		23.7	28.9	42.0	59.0	75.0	68.1	81.6	39.9	22.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	90		22.2	27.9	40.6	58.0	83.0	78.1	86.4	43.3	24.4
10 20.1 25.9 37.4 55.5 88.9 88.0 89.9 45.5 25.0 20 19.3 24.8 35.8 54.4 90.0 89.6 90.3 45.3 24.5 30 18.5 23.5 34.5 53.6 90.5 90.3 90.6 45.0 24.0 40 17.9 22.5 33.4 53.2 90.7 90.7 90.8 44.8 23.8 50 17.9 22.2 33.1 53.2 90.9 90.9 90.9 90.9 90.9 45.0 23.8 70 18.6 22.5 33.2 53.3 91.0 91.2 91.1 45.0 23.8 80 18.2 21.9 32.7 52.7 91.0 91.3 91.1 45.3 23.7 90 17.7 21.4 32.1 53.8 91.0 91.3 91.1 46.2 24.9 Deminant Transmit. (A) 486.0 487	600		20.8	26.8	38.8	56.7	87.2	85.0	88.8	45.0	25.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10		20.1	25.9	37.4	55.5	88.9	88.0	89.9	45.5	25.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		19.3	24.8	35.8	54.4	90.0	89.6	90.3	45.3	24.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30		18.5	23.5	34.5	53.6	90.5	90.3	90.6	45.0	24.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40		17.9	22.5	33.4	53.2	90.7	90.7	90.8	44.8	23.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50		17.9	22.2	33.1	53.2	90.9	90.9	90.9	44.9	23.7
7018.622.533.253.391.091.291.145.023.88018.221.932.752.791.091.391.145.023.79017.521.231.952.691.091.391.145.323.970017.721.432.153.891.091.391.146.224.9Dominant Wave Lgth.(A)486.0483.0486.0487.0595.0593.8593.2590.9589.2Excitation Purity(A)27.421.312.96.741.558.530.045.545.5% luminous Transmit.(A)26.930.443.659.768.062.375.336.120.4 x_A y_A 0.3472 0.35540.36050.3971 0.38290.4215 0.39570.5120 0.40300.5353 0.40470.4070 	60		18.3	22.4	33.1	53.5	91.0	91.0	91.0	45.0	23.8
8018.221.932.752.791.091.391.145.023.79017.521.231.952.691.091.391.145.323.970017.721.432.153.891.091.391.146.224.9Dominant Wave Lgth.(A)486.0483.0486.0487.0595.0593.8593.2590.9589.2Excitation Purity(A)27.421.312.96.741.558.530.045.545.5% Luminous Transmit.(A)26.930.443.659.768.062.375.336.120.4 χ_A y_A 0.3472 0.35540.36050.3971 0.32920.4215 0.39570.5120 0.40300.5353 0.40470.4070 0.40700.4126 0.41260.4172Dominant Wave Lgth.(C)47.0475.0476.0587.3585.7585.3582.5580.7Excitation Purity(C)43.337.225.213.830.548.021.035.636.2% Luminous Transmit.(C)30.233.145.861.562.555.571.133.519.1 χ_C 0.21700.22370.23670.26080.2820 0.25860.38600.4247 0.35420.36000.3881 0.38500.3850% Luminous Y_C0.21700.22590.25860.28570.38600.34247 0.35420.36000.3881	70		18.6	22.5	33.2	53.3	91.0	91.2	91.1	45.0	23.8
90 17.5 21.2 31.9 52.6 91.0 91.3 91.1 45.3 23.9 700 17.7 21.4 32.1 53.8 91.0 91.3 91.1 46.2 24.9 Dominant Wave Lgth. (A) 486.0 483.0 486.0 487.0 595.0 593.8 593.2 590.9 589.2 Excitation Purity (A) 27.4 21.3 12.9 6.7 41.5 58.5 30.0 45.5 45.5 % luminous Transmit. (A) 26.9 30.4 43.6 59.7 68.0 62.3 75.3 36.1 20.4 x _A y _A 0.3472 0.3554 0.3605 0.3971 0.3829 0.4215 0.3957 0.5120 0.4030 0.4913 0.4047 0.5081 0.4070 0.5031 0.4126 0.5034 0.4172 Dominant wave Lgth. (C) 47.0 475.0 476.0 587.3 585.7 585.3 580.7 Excitation Wave Lgth. (C) 43.3 37.2 25.2 13.8 30.5	80		18.2	21.9	32.7	52.7	91.0	91.3	91.1	45.0	23.7
70017.721.432.153.891.091.391.146.224.9Dominant Wave Lgth.(A)486.0483.0486.0487.0595.0593.8593.2590.9589.2Excitation Purity(A)27.421.312.96.741.558.530.045.545.5% Luminous Transmit.(A)26.930.443.659.768.062.375.336.120.4 x_A y_A 0.34720.36900.39710.42150.51200.53530.49130.50810.5034Dominant wave Lgth.(C)475.0474.0475.0476.0587.3585.7585.3582.5580.7Excitation Purity(C)43.337.225.213.830.548.021.035.636.2% Luminous Transmit.(C)30.233.145.861.562.555.571.133.519.1 x_C v_C 0.22370.23670.26080.28200.38600.42470.36000.38810.3850 v_C 0.21700.22590.25860.28570.35420.36050.38250.36200.3625	90		17.5	21.2	31.9	52.6	91.0	91.3	91.1	45.3	23.9
Dominant Wave Lgth. (A) 486.0 483.0 486.0 487.0 595.0 593.8 593.2 590.9 589.2 Excitation Purity (A) 27.4 21.3 12.9 6.7 41.5 58.5 30.0 45.5 45.5 % Luminous Transmit. (A) 26.9 30.4 43.6 59.7 68.0 62.3 75.3 36.1 20.4 χ_A y_A 0.3472 0.3554 0.3690 0.3605 0.3971 0.3829 0.4215 0.3957 0.5120 0.4030 0.4913 0.4047 0.5081 0.4070 0.5081 0.4126 0.4172 Dominant Wave Lgth. (C) 475.0 476.0 587.3 585.7 585.3 582.5 580.7 Excitation Furity (C) 43.3 37.2 25.2 13.8 30.5 48.0 21.0 35.6 36.2 % Luminous Transmit. (C) 30.2 33.1 45.8 61.5 62.5 55.5 71.1 33.5 19.1 χ_C 0.2237 0.2367 0.2608	700		17.7	21.4	32.1	53.8	91.0	91.3	91.1	46.2	24.9
Excitation Purity(A) 27.4 21.3 12.9 6.7 41.5 58.5 30.0 45.5 45.5 % Luminous Transmit.(A) 26.9 30.4 43.6 59.7 68.0 62.3 75.3 36.1 20.4 x_A y_A 0.3472 0.3690 0.3971 0.4215 0.5120 0.5353 0.4913 0.5081 0.5034 y_A 0.3554 0.3605 0.3829 0.3957 0.4030 0.4047 0.4070 0.4126 0.4172 Dominant Wave Lgth.(C) 475.0 476.0 587.3 585.7 585.3 582.5 580.7 Excitation Purity(C) 43.3 37.2 25.2 13.8 30.5 48.0 21.0 35.6 36.2 % Luminous Transmit.(C) 30.2 33.1 45.8 61.5 62.5 55.5 71.1 33.5 19.1 x_C v_C 0.2237 0.2367 0.2608 0.2820 0.3860 0.4247 0.3600 0.3881 0.3850	Dominant Wave Lgth.	(A)	486.0	483.0	486.0	487.0	595.0	593.8	593.2	590.9	589.2
% Luminous Transmit. (A) 26.9 30.4 43.6 59.7 68.0 62.3 75.3 36.1 20.4 x_A 0.3472 0.3690 0.3971 0.4215 0.5120 0.5353 0.4913 0.5081 0.5034 y_A 0.3554 0.3605 0.3829 0.3957 0.4030 0.4047 0.4070 0.4126 0.4172 Dominant Wave Lgth. (C) 475.0 476.0 587.3 585.7 585.3 582.5 580.7 Excitation Purity (C) 43.3 37.2 25.2 13.8 30.5 48.0 21.0 35.6 36.2 % Luminous Transmit. (C) 30.2 33.1 45.8 61.5 62.5 55.5 71.1 33.5 19.1 x_C 0.2237 0.2367 0.2608 0.2820 0.3805 0.3420 0.3810 0.3850 v_C 0.2170 0.2259 0.2586 0.2857 0.3542 0.3805 0.3450 0.3712 0.3712 <td>Excitation Purity</td> <td>(A)</td> <td>27.4</td> <td>21.3</td> <td>12.9</td> <td>6.7</td> <td>41.5</td> <td>58.5</td> <td>30.0</td> <td>45.5</td> <td>45.5</td>	Excitation Purity	(A)	27.4	21.3	12.9	6.7	41.5	58.5	30.0	45.5	45.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	% Luminous Transmit.	(A)	26.9	30.4	43.6	59.7	68.0	62.3	75.3	36.1	20.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Υ.		0.3472	0.3690	0.3971	0.4215	0.5120	0.5353	0.4913	0.5081	0.5034
Dominant Wave Lgth. (C) 475.0 474.0 475.0 476.0 587.3 585.7 585.3 582.5 580.7 Excitation Purity (C) 43.3 37.2 25.2 13.8 30.5 48.0 21.0 35.6 36.2 % Luminous Transmit. (C) 30.2 33.1 45.8 61.5 62.5 55.5 71.1 33.5 19.1 $x_{\rm C}$ 0.2237 0.2367 0.2608 0.2820 0.3860 0.4247 0.3600 0.3881 0.3850 $y_{\rm C}$ 0.2170 0.2259 0.2586 0.2857 0.3542 0.3805 0.3450 0.3712 0.3762	x_A y_A		0.3554	0.3605	0.3829	0.3957	0.4030	0.4047	0.4070	0.4126	0.4172
Excitation Purity (C) 43.3 37.2 25.2 13.8 30.5 48.0 21.0 35.6 36.2 % Luminous Transmit. (C) 30.2 33.1 45.8 61.5 62.5 55.5 71.1 33.5 19.1 x _C 0.2237 0.2367 0.2608 0.2820 0.3860 0.4247 0.3600 0.3881 0.3850 y _C 0.2170 0.2259 0.2586 0.2857 0.3542 0.3805 0.3450 0.3712 0.3762	Dominant Wave Lgth.	(C)	475.0	474.0	475.0	476.0	587.3	585.7	585.3	582.5	580.7
% Luminous Transmit. (C) 30.2 33.1 45.8 61.5 62.5 55.5 71.1 33.5 19.1 x _C 0.2237 0.2367 0.2608 0.2820 0.3860 0.4247 0.3600 0.3881 0.3850 V _C 0.2170 0.2259 0.2586 0.2857 0.3542 0.3805 0.3450 0.3712 0.3762	Excitation Purity	(C)	43.3	37.2	25.2	13.8	30.5	48.0	21.0	35.6	36.2
x _C 0.2237 0.2367 0.2608 0.2820 0.3860 0.4247 0.3600 0.3881 0.3850 x _C 0.2170 0.2259 0.2586 0.2857 0.3542 0.3805 0.3450 0.3712 0.3762	% Luminous Transmit.	(C)	30.2	33.1	45.8	61.5	62.5	55.5	71.1	33.5	19.1
	x _C		0.2237 0.2170	0.2367 0.2259	0.2608	0.2820 0.2857	0.3860 0.3542	0.4247 0.3805	0.3600 0.3450	0.3881 0.3712	0.3850 0.3762

WAVE					PE	RCENT TR	ANSMITT	ANCE			
LENGT	H	No. 81	No. 81A	No. 81B	No. 81C	No. 81D	No. 81EF	No. 82	No. 82A	No. 82B	No. 82C
400		77.7	65.1	55.1	46.1	38.2	30.7	83.0	80.1	76.7	73.4
10		78.1	65.9	55.8	46.6	38.4	31.5	83.7	80.8	78.0	75.0
20		79.0	67.6	57.7	49.0	41.0	34.3	84.6	81.6	79.2	76.4
30		80.5	70.2	61.0	52.5	45.5	38.6	85.1	82.2	79.7	77.2
40		81.9	72.8	64.5	57.2	50.0	43.2	85.4	82.4	79.7	77.2
50		83.0	74.8	67.2	60.5	53.9	47.4	85.4	82.4	79.2	76.6
60		83.7	76.0	69.1	63.0	56.5	50.2	85.0	81.7	78.0	75.2
70		84.3	77.1	70.6	64.2	58.1	52.0	84.6	80.7	76.3	73.2
80		84.6	77.8	71.3	65.0	59.0	53.0	84.0	79.3	74.4	70.7
90		84.9	78.3	71.8	65.7	60.0	54.0	83.3	78.0	72.1	68.1
500		85.3	78.6	72.6	66.4	60.8	55.4	82.6	76.6	70.2	65.7
10		85.4	79.0	72.9	66.5	61.1	56.2	82.0	75.3	68.3	63.5
20		85.5	79.5	73.2	67.0	61.6	57.0	81.4	74.0	66.5	61.5
30		86.0	80.4	74.5	68.8	63.5	59.5	81.0	73.1	65.5	59.9
40		86.5	81.5	76.0	71.0	66.1	62.7	80.8	72.7	65.0	59.1
50		86.8	82.3	77.0	72.0	67.3	64.5	80.6	72.4	64.5	58.3
60		87.0	82.6	77.6	72.5	68.0	65.3	80.4	71.8	63.8	57.2
70		87.1	82.7	77.8	72.7	68.3	65.8	80.2	71.5	63.2	56.2
80		87.1	82.8	78.0	73.0	68.5	66.0	80.2	71.5	63.2	56.1
90		87.4	83.1	78.2	74.0	69.5	66.5	80.3	71.7	63.4	56.0
600		87.6	84.0	79.1	75.6	72.0	68.1	80.2	71.5	63.0	55.0
10		88.1	85.0	81.0	78.5	75.0	71.6	79.3	70.3	61.5	53.0
20		88.8	86.1	83.1	80.8	78.0	74.7	78.4	68.5	59.0	50.2
30		89.2	87.0	84.2	82.1	/9.8	77.0	//.5	66.9	56.9	47.4
40		89.4	87.4	85.1	83.0	80.8	78.4	76.8	65.5	55.0	45.2
50		89.5	87.7	85.0	83.5	81.5	79.2	76.5	64.8	54.1	44.1
50		89.8	88.0	80.U	04.1	82.1	80.1	76.2	64.6	53.7	43.6
70		90.0	00.2	00.0	04.0	03.0	00.9	76.1	64.3	53.7	43.5
90		90.3	89.0	87.5	86.1	84.6	82.9	76.2	64.2	53.5	43.1
700		90.5	80.2	88.0	86.8	85.5	84.0	77.1	64.6	54.1	42.0
/00		50.5	05.2	00.0	00.0	00.0	04.0	77.1	04.0	J4.1	43.5
Dominant Wave Lgth.	(A)	587.2	587.5	588.0	589.0	589.4	588.4	490.8	489.6	488.6	489.4
Excitation Purity	(A)	4.0	9.0	12.0	16.0	20.5	26.0	1.5	3.0	5.0	7.5
% Luminous Transmit.	(A)	87.2	82.9	78.1	73.6	69.4	66.1	80.1	71.5	63.3	56.2
Υ.		0.4522	0.4573	0.4620	0.4675	0.4729	0.4778	0.4416	0.4350	0.4275	0.4171
\mathcal{X}_{A} \mathcal{Y}_{A}		0.4089	0.4102	0.4108	0.4110	0.4116	0.4142	0.4061	0.4035	0.4003	0.3981
Dominant Wave Lgth.	(C)	577.2	577.5	578.0	579.0	579.4	578.7	477.8	476.6	476.0	477.3
Excitation	(C)	2.9	6.0	8.7	11.5	14.7	18.9	2.9	6.3	10.1	14.3
% Luminous Transmit.	(C)	86.8	82.0	76.9	72.0	67.4	63.9	80.6	72.5	64.6	58.1
x _C		0.3154 0.3218	0.3213 0.3275	0.3266	0.3329 0.3367	0.3393 0.3418	0.3468 0.3501	0.3041 0.3107	0.2970 0.3028	0.2894 0.2941	0.2803 0.2863

Chromaticity diagram for Standard Source "A" (tungsten light). This diagram shows the colors of various WRATTEN filters when they are illuminated by the Standard Source "A" specified by the International Commission on Illumination (CIE). The Standard Source "A" has a color temperature of 2854 K, equivalent to high-wattage tungsten light. The coordinates x_A and y_A for each filter are given in the data tables on pages 24 through 71. The rectangular outlined portion in the middle of the diagram shows the area covered by the enlarged section on page 61.

Chromaticity diagram for Standard Source "A" (enlarged section). This diagram is an enlargement of the portion indicated by the small rectangle in the diagram on page 60. It shows the colors of certain filters which are grouped closely together near white. Filters of this nature, such as KODAK Color Compensating Filters and KODAK Light Balancing Filters, are frequently used in color photography and photometry.

Chromaticity diagram for Standard Source "C" (artificial daylight). This shows the colors of various WRATTEN filters when they are illuminated by the Standard Source "C" specified by the International Commission on Illumination (CIE). The Standard Source "C" is approximately equivalent to average daylight, having a color temperature of 6750 K. The coordinates $x_{\rm C}$ and $y_{\rm C}$ for each filter are given in the data tables on pages 24 through 71. The rectangular outlined portion in the middle of the diagram shows the area covered by the enlarged section on page 63.

Chromaticity diagram for Standard Source "C" (enlarged section). This diagram is an enlargement of the portion indicated by the small rectangle in the diagram on page 62. It shows the colors of certain filters which are grouped closely together near white. Filters of this nature, such as KODAK Color Compensating Filters and KODAK Light Balancing Filters, are frequently used in color photography and photometry.

WAVE LENGT	H	CC05R	CC10R	CC20R	CC30R	PERC CC40R	CENT TRA CC50R	NSMITTAN CC05B	ICE CC10B	CC20B	CC30B	CC40B	CC50B
400		79.2	72.0	58.1	47.1	38.1	30.4	87.0	85.5	82.2	80.2	77.0	74.1
10		79.2	71.6	57.3	46.0	36.7	29.1	87.5	86.4	84.0	82.5	80.3	78.4
20		79.3	71.4	56.6	45.0	35.5	28.2	87.7	87.2	85.0	84.0	82.2	80.7
30		79.4	71.3	56.3	44.5	34.7	27.8	88.0	87.5	85.3	84.3	82.5	81.1
40		79.5	71.5	56.3	44.4	34.4	27.7	88.1	87.5	85.0	83.5	81.3	79.8
50		79.6	71.6	56.5	44.6	34.5	28.0	88.1	87.2	83.9	81.9	78.7	76.6
60		79.9	71.9	57.2	45.2	35.2	28.9	87.9	86.4	82.5	79.5	75.9	72.9
70		80.5	72.9	58.7	47.0	37.2	31.1	87.5	85.3	80.3	76.2	72.0	67.9
80		81.3	74.4	61.2	50.2	40.7	34.7	87.0	84.0	77.8	72.5	67.5	62.7
90		82.1	75.9	63.4	53.0	44.0	37.6	86.2	82.4	74.2	68.3	62.3	56.6
500		82.2	76.2	64.0	53.7	45.0	38.0	85.2	80.5	71.2	63.8	56.7	50.1
10		81.7	75.4	62.6	52.0	43.5	35.8	84.4	78.6	67.7	58.7	51.0	44.5
20		81.0	74.1	60.5	49.3	40.7	32.7	83.5	77.0	64.0	54.4	46.0	38.6
30		80.4	72.8	58.4	46.8	38.0	29.7	82.6	75.2	61.5	50.7	41.6	34.1
40		80.0	72.1	57.1	45.2	36.3	27.9	82.1	73.9	59.5	48.3	39.0	31.3
50		79.9	71.9	56.7	44.7	35.8	27.3	81.5	73.0	58.0	46.6	36.9	29.5
60		80.4	72.6	57.6	45.7	36.9	28.2	81.4	72.7	57.5	45.9	35.9	28.6
70		81.3	74.3	60.5	48.9	40.3	31.4	81.4	73.0	57.9	46.3	36.1	28.7
80		83.2	77.3	65.1	54.5	46.3	37.6	81.9	73.9	59.3	47.9	37.8	30.5
90		85.2	80.7	71.2	62.4	54.9	47.1	82.7	75.1	61.6	50.3	40.8	33.4
600		87.0	84.0	77.6	70.7	64.5	58.0	83.4	76.3	63.5	53.0	43.5	36.0
10		88.4	86.7	82.6	78.0	73.3	68.8	83.6	76.7	64.5	54.6	44.7	37.8
20		89.5	88.6	86.2	83.3	80.5	77.7	83.5	76.5	64.3	54.4	44.3	37.5
30		90.1	89.7	88.4	86.9	84.9	83.4	83.2	75.6	63.1	53.2	42.5	35.6
40		90.4	90.4	89.7	88.9	87.7	86.8	82.8	74.5	61.6	51.5	40.2	33.7
50		90.7	90.6	90.4	89.9	89.2	88.7	82.5	74.0	60.6	50.3	39.0	32.4
60		90.8	90.7	90.6	90.4	89.9	89.7	82.5	73.8	60.1	49.5	38.4	31.8
70		90.9	90.9	90.7	90.6	90.3	90.2	82.3	73.3	59.6	49.0	37.7	31.0
80		91.0	91.0	90.9	90.8	90.5	90.4	82.0	72.8	58.6	48.2	36.5	30.0
90		91.1	91.0	91.0	90.9	90.7	90.6	81.9	72.5	58.1	47.2	35.4	29.0
700		91.1	91.1	91.0	91.0	90.9	90.8	82.2	73.0	58.5	47.5	35.6	29.0
Dominant Wave Lgth.	(A)	610.0	607.0	611.0	613.5	613.5	615.5	478.9	460.0	443.0	448.0	463.0	461.0
Excitation Purity	(A)	4.0	8.0	15.0	21.5	29.0	34.5	1.0	2.5	5.0	8.5	12.0	16.0
% Luminous Transmit.	(A)	84.6	78.7	68.1	59.6	51.7	46.1	81.1	75.0	61.5	50.9	41.3	34.1
XA		0.4562	0.4649	0.4813	0.4965	0.5140	0.5290	0.4449	0.4404	0.4328	0.4235	0.4100	0.3995
y _A		0.4044	0.4021	0.3956	0.3895	0.3830	0.3764	0.4053	0.3985	0.3871	0.3751	0.3624	0.3481
Dominant Wave Lgth.	(C)	604.0	598.0	604.0	605.8	605.5	608.5	458.0	462.5	460.5	461.0	464.0	462.8
Excitation Purity	(C)	2.1	4.7	8.6	12.4	17.4	21.4	2.7	6.3	13.2	20.1	27.6	34.2
% Luminous Transmit.	(C)	83.7	77.0	65.3	55.9	47.3	41.2	82.8	75.5	62.3	52.0	42.8	35.7
x _C		0.3170 0.3171	0.3246 0.3194	0.3385 0.3199	0.3522	0.3695	0.3851 0.3213	0.3057 0.3087	0.2994 0.2987	0.2881 0.2789	0.2763 0.2592	0.2626 0.2393	0.2519 0.2201

KODAK COLOR COMPENSATING FILTERS

Wave Length λ (millimicrons)

Stability: CC025R—AAA CC05R—AAA CC10R—AAA CC20R—AAA CC20R—ABA CC30R—ABA CC40R—ABA

CC B

CC

R

WAVE	E					PER	CENT TR	NSMITTA	NCE				
LENGT	H (CC05G	CC10G	CC20G	CC30G	CC40G	CC50G	CC05Y	CC10Y	CC20Y	CC30Y	CC40Y	CC50Y
400		79.6	71.3	57.4	45.2	36.1	29.4	78.8	72.3	58.2	47.1	38.3	31.3
10		79.7	71.5	56.4	44.8	35.5	28.9	78.6	71.6	56.8	45.3	36.3	29.2
20		79.9	71.8	55.9	45.0	35.5	29.0	78.6	71.4	55.9	44.3	35.3	27.9
30		80.1	72.2	55.6	45.6	35.7	29.6	78.8	71.6	55.7	44.2	35.0	27.5
40		80.6	72.8	55.9	46.6	36.6	30.8	79.2	72.4	56.3	44.9	35.7	27.9
50		81.1	73.7	57.1	48.3	38.1	32.5	79.7	73.3	57.4	45.3	37.3	29.2
60		81.8	74.9	59.9	51.0	40.8	35.5	80.6	74.7	59.7	49.0	40.2	31.8
70		83.1	77.1	64.3	55.8	46.2	41.1	82.2	77.2	63.9	54.1	45.9	37.2
80		84.8	80.1	69.2	62.9	54.5	49.9	84.4	80.4	70.6	62.2	55.6	47.1
90		86.6	83.1	74.8	70.3	64.0	60.0	86.6	84.1	77.4	71.5	66.6	59.7
500		87.7	85.4	80.6	76.2	71.5	68.1	88.1	86.8	82.9	79.4	76.6	71.8
10		88.4	86.6	83.7	79.2	75.6	72.7	89.1	88.4	86.3	84.3	82.6	80.0
20		88.7	87.0	84.8	80.4	77.1	74.5	89.6	89.3	88.1	86.9	85.9	84.4
30		88.6	87.0	84.4	80.2	77.1	74.2	89.9	89.9	89.0	88.3	87.5	86.7
40		88.5	86.7	83.4	79.1	75.8	72.4	90.2	90.1	89.6	89.0	88.4	87.9
50		88.2	86.1	82.2	77.6	73.8	70.2	90.4	90.3	89.9	89.5	89.0	88.6
60		87.9	85.4	80.6	75.3	71.3	66.9	90.6	90.5	90.0	89.8	89.4	89.2
70		87.4	84.4	78.8	72.4	68.3	63.0	90.7	90.6	90.4	90.0	89.7	89.6
80		86.8	83.2	76.5	69.4	64.6	58.6	90.8	90.7	90.5	90.3	89.9	89.9
90		86.2	81.9	74.0	66.2	61.1	54.6	90.9	90.8	90.6	90.5	90.1	90.0
600		85.6	80.6	71.7	63.2	57.3	50.4	90.9	90.8	90.6	90.6	90.3	90.2
10		84.8	79.3	69.1	59.8	53.7	46.2	91.0	90.9	90.7	90.6	90.4	90.4
20		83.8	77.7	66.2	55.9	49.6	41.5	91.0	90.9	90.8	90.7	90.5	90.5
30		82.9	76.1	63.4	52.3	45.7	37.4	91.0	91.0	90.8	90.7	90.5	90.5
40		82.3	74.1	61.1	49.8	42.5	34.3	91.1	91.0	90.9	90.8	90.6	90.6
50		82.0	73.8	59.5	48.2	40.5	32.6	91.1	91.0	90.9	90.9	90.7	90.7
60		81.7	73.4	58.8	47.3	39.5	31.7	91.2	91.1	91.0	91.0	90.8	90.8
70		81.5	73.0	58.3	46.6	38.8	30.8	91.2	91.1	91.0	91.0	90.9	90.9
80		81.1	72.5	57.5	45.5	37.7	29.7	91.3	91.2	91.1	91.1	91.0	91.0
90		81.1	72.1	56.7	44.7	36.6	28.8	91.3	91.2	91.2	91.1	91.1	91.1
700		81.4	72.5	56.9	45.6	36.5	29.3	91.4	91.3	91.3	91.2	91.1	91.1
Dominant Wave Lgth.	(A)	554.6	559.0	559.0	558.0	558.5	557.0	581.6	581.4	581.0	580.8	580.7	580.7
Excitation Purity	(A)	2.5	5.5	10.5	15.5	21.0	24.5	7.5	13.0	23.5	34.5	42.0	48.0
% Luminous Transmit.	(A)	86.8	83.7	76.3	70.2	65.3	60.5	90.9	90.7	90.3	89.8	89.4	89.1
XA		0.4451	0.4434	0.4386	0.4333	0.4292	0.4232	0.4531	0.4567	0.4643	0.4716	0.4767	0.4808
y _A		0.4131	0.4193	0.4319	0.4439	0.4556	0.4670	0.4125	0.4166	0.4249	0.4332	0.4388	0.4432
Dominant Wave Lgth.	(C)	553.0	555.5	555.0	554.0	554.4	553.3	572.0	571.5	571.2	571.2	571.2	571.2
Excitation Purity	(C)	2.3	5.2	10.8	15.8	21.2	25.9	5.4	9.5	18.8	28.4	35.6	42.0
% Luminous Transmit.	(C)	87.2	84.5	77.8	72.2	67.7	63.3	90.4	90.1	89.1	88.2	87.4	86.9
$x_{\rm C}$ $y_{\rm C}$		0.3105 0.3245	0.3117 0.3340	0.3131 0.3533	0.3134 0.3716	0.3151 0.3900	0.3143 0.4078	0.3181 0.3283	0.3239 0.3382	0.3369 0.3597	0.3506 0.3816	0.3610 0.3985	0.3699 0.4131

KODAK COLOR COMPENSATING FILTERS

Wave Length λ (millimicrons)

YELLOW

0.9 0.8 01 0 0 Density 501 0.5 401 0. Stability: 307 0. CC025Y-AAA CC05Y-AAA CC10Y-AAA CC20Y-AAA 10 CC30Y-AAA 051 CC40Y-AAA 025 Y CC50Y-AAA 0.0 Wave Length λ (millimicrons)

CC

G

WAVE LENGT	1	CC05M	CC10M	CC20M	ссзом	PERC CC40M	ENT TRA	NSMITTAN CC05C	ICE CC10C	CC20C	CC30C	CC40C	CC50C
400		87.6	86.6	85.6	84.2	82.3	80.9	87.3	86.0	83.9	82.3	80.4	78.8
10		88.2	87.7	86.6	85.7	84.6	83.6	88.2	87.5	85.2	84.5	83.4	82.7
20		88.6	88.0	87.0	85.9	85.2	84.4	88.7	88.1	86.5	86.0	85.3	84.8
30		88.7	88.0	86.9	85.6	84.4	83.6	89.0	88.6	87.5	87.0	86.3	85.9
40		88.7	87.9	86.0	84.7	82.5	81.4	89.3	89.0	87.7	87.3	86.6	86.1
50		88.6	87.5	84.9	82.8	80.0	78.1	89.5	89.1	87.8	87.5	86.6	86.0
60		88.4	86.5	83.1	80.0	76.1	73.7	89.6	89.1	87.7	87.3	86.4	85.7
70		87.8	85.2	80.8	76.4	71.3	68.0	89.7	89.0	87.5	87.0	85.8	85.2
80		87.0	83.6	77.9	72.1	65.8	61.7	89.7	89.0	87.2	86.5	85.3	84.3
90		86.0	81.8	74.4	67.0	60.0	55.0	89.7	89.0	87.0	86.0	84.4	83.4
500		85.0	79.7	70.5	61.7	53.7	48.1	89.6	89.0	86.5	85.2	83.5	82.3
10		83.8	77.5	66.7	56.5	47.7	41.6	89.6	88.7	86.0	84.4	82.4	80.8
20		82.7	75.3	63.4	52.0	42.8	36.3	89.5	88.5	85.2	83.5	81.1	79.2
30		81.8	73.7	60.5	48.6	39.0	31.9	89.4	88.0	84.3	82.4	79.6	77.3
40		81.3	72.5	58.6	46.6	36.7	29.8	89.2	87.5	83.4	81.0	77.7	75.0
50		81.2	72.2	58.0	46.0	36.0	29.1	88.9	87.0	82.3	79.0	75.3	72.2
60		81.5	72.8	58.3	46.5	36.7	29.7	88.5	86.1	80.5	76.7	72.7	69.0
70		82.5	74.6	60.5	49.8	40.2	32.3	88.0	85.0	78.5	74.0	69.3	65.0
80		84.0	77.3	64.9	55.6	46.2	39.0	87.5	83.8	76.1	70.9	65.4	60.5
90		85.8	80.8	70.6	63.3	54.9	48.7	87.0	82.5	73.9	67.5	61.6	55.8
600		88.0	84.5	77.1	71.6	64.9	59.9	86.4	81.0	71.2	64.1	57.6	51.3
10		89.3	87.0	82.2	79.2	74.9	70.7	85.5	79.5	68.5	60.4	53.4	46.2
20		90.2	88.9	86.1	84.1	81.4	79.2	84.5	77.9	65.5	56.7	49.2	42.3
30		90.6	90.0	88.7	87.4	86.0	84.5	83.8	76.3	62.7	53.1	45.0	38.0
40		90.8	90.5	90.0	89.3	88.7	87.6	83.3	75.1	60.8	50.4	42.0	34.9
50		91.0	90.7	90.5	90.2	90.0	89.7	82.8	74.4	59.5	48.8	40.2	32.9
60		91.1	91.0	90.8	90.8	90.4	90.4	82.5	74.0	58.5	48.0	39.4	32.0
70		91.2	91.2	91.0	91.0	90.7	90.7	82.4	73.6	57.9	47.2	38.6	31.0
80		91 3	91 3	91 2	91 1	91.0	91.0	82.0	73.0	57.5	46.0	37.5	29.9
90		91.4	91.4	91.4	91.3	91.3	91.3	82.0	72.8	57.4	45.5	36.7	29.1
700		91.5	91.5	91.5	91.5	91.5	91.5	82.5	74.0	58.5	46.4	37.3	29.8
ominant ave Lgth.	(A)	535.4c	543.0c	549.0c	547.5c	548.0c	549.0c	499.7	498.6	497.6	497.4	496.9	496.7
xcitation urity	(A)	3.5	7.0	13.0	19.5	25.5	31.0	1.0	3.0	6.0	9.0	12.0	14.5
6 Luminous ransmit.	(A)	84.9	79.1	69.0	60.8	53.2	47.5	87.4	83.8	76.4	71.4	66.4	61.9
XA		0.4524	0.4563	0.4628	0.4706	0.4779	0.4833	0.4422	0.4350	0.4211	0.4084	0.3970	0.3846
y _A		0.4004	0.3929	0.3787	0.3647	0.3509	0.3387	0.4090	0.4102	0.4117	0.4133	0.4137	0.4141
ominant ave Lgth.	(C)	541.0c	547.5c	551.2c	550.0c	550.3c	551.2c	489.0	487.5	486.4	486.3	485.8	485.6
xcitation urity	(C)	3.5	7.4	14.5	21.4	28.2	33.9	1.7	4.1	8.8	12.8	16.4	20.2
6 Luminous	(C)	84.2	77.9	67.1	58.0	49.9	44.0	88.0	85.1	78.9	74.8	70.5	66.7
x _C		0.3114	0.3114	0.3104	0.3112	0.3112	0.3101	0.3058	0.2997	0.2882	0.2786	0.2699	0.2609
УC		0.3082	0.2986	0.2808	0.2634	0.2467	0.2320	0.3156	0.3135	0.3084	0.3044	0.2997	0.29

KODAK COLOR COMPENSATING FILTERS

Wave Length λ (millimicrons)

CYAN

CC C

C

M

Stability: CC025C—AAA CC05C—AAA CC10C—ABA CC20C—ABA CC30C—ACA CC40C—ACA CC50C—BDA

WAVE	PERCENT TRANSMITTANCE					
LENGTH	No. 87	No. 87A	No. 87B	No. 87C	No. 88A	No. 89B*
700	-	-	-	-	<u></u>	11.2
10	-	-	-	-	-	32.4
20	-	-	-	-	-	57.6
30	-	-	-	-	3.16	69.1
40	0.10	-	-	-	19.0	77.6
50	2.37	-	-	—	37.8	83.1
60	8.82	-	-	-	55.2	85.0
70	21.0	-	-	-	69.5	86.1
80	36.2	-		-	78.4	87.0
90	52.0	-	-	-	81.5	87.7
800	63.8	-		0.32	82.6	88.1
10	72.2	-	-	3.20	83.0	88.4
20	78.0	-	0.10	8.90	83.8	88.6
30	82.2	-	0.60	17.8	84.5	88.8
40	84.5	-	1.86	28.2	85.0	89.0
50	86.2	-	4.07	41.0	85.4	89.2
60	87.7	-	7.58	53.8	85.8	89.4
70	88.7	-	12.7	61.6	86.2	89.6
80	89.5	0.10	18.0	69.2	86.5	89.8
90	90.0	0.28	24.5	74.1	86.8	89.9
900	90.4	0.73	31.2	78.5	87.0	90.0
10	90.6	1.55	38.0	81.5	87.2	90.1
20	90.8	2.95	44.1	83.6	87.4	90.2
30	91.0	4.89	49.5	85.1	87.5	90.3
40	91.1	7.33	53.7	86.0	87.6	90.4
50	91.2	10.2	58.2	87.0	87.7	90.5
60	-	14.0	61.7	-	-	-
70	-	17.8	64.6	-	-	-
80	-	21.8	67.6	-	-	-
90	_	26.3	70.0	-	-	-
1000	-	30.2	73.3	_	-	_
10	-	33.8	75.8	-	-	-
20	-	38.0	78.5	-	-	-
30	-	42.1	80.2	-	-	-
40	-	46.7	82.2	-	-	-
50	-	50.6	84.1	-	-	-
60	-	54.3	87.2	-	-	-
70	-	58.3	88.1	-	-	-
80	-	60.9	88.2	-	-	. –
90	-	63.1	89.1	-	-	-
1100	-	64.5	89.1	-	-	-

U

*For transmittance below 700 m μ , see page 50.

		No. 87	No. 87A	No. 87B	No. 87C	No. 88A	No. 89B
Dominant Wave Lgth.	(A)	757.0	None	None	None	746.0	718.0
Excitation Purity	(A)	100.0	None	None	None	100.0	100.0
% Luminous Transmit.	(A)	0.0002	None	None	None	0.005	0.034
$\begin{array}{c} x_{\mathrm{A}} \\ y_{\mathrm{A}} \end{array}$	1	0.7347 0.2653	None None	None None	None None	0.7347 0.2653	0.7347 0.2653
Dominant Wave Lgth.	(C)	757.0	None	None	None	748.0	718.0
Excitation Purity	(C)	100.0	None	None	None	100 <mark>.</mark> 0	100.0
% Luminous Transmit.	(C)	0.0001	None	None	None	0.002	0.013
x _C УС		0.7347 0.2653	None None	None None	None None	0.7347 0.2653	0.7347 0.2653

87 88A

DENSITY-TRANSMITTANCE TABLE

DENSITY

TRANS. (%)	0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0	0.00	3.00	2.70	2.52	2.40	2.30	2.22	2.15	2.10	2.05
1	2.00	1.96	1.92	1.89	1.85	1.82	1.80	1.//	1.74	1.72
2	1.52	1.50	1.50	1 48	1.02	1.00	1 44	1.43	1.55	1.54
4	1.40	1.39	1.38	1.37	1.36	1.35	1.34	1.33	1.32	1.31
5	1.30	1.29	1.28	1.28	1.27	1.26	1.25	1.24	1.24	1.23
6	1.22	1.21	1.21	1.20	1.19	1.19	1.18	1.17	1.17	1.16
7	1.15	1.15	1.14	1.14	1.13	1.13	1.12	1.11	1.11	1.10
8	1.10	1.09	1.09	1.08	1.08	1.07	1.07	1.06	1.06	1.05
10	1.05	1.04	99	1.03	1.03	1.02	97	97	97	96
11	.96	.95	.95	.95	.94	.94	.93	.93	.93	.92
12	.92	.92	.91	.91	.91	.90	.90	.90	.89	.89
13	.89	.88	.88	.88	.87	.87	.87	.86	.86	.86
14	.85	.85	.85	.84	.84	.84	.84	.83	.83	.83
15	.82	.82	.82	.82	.81	.81	.81	.80	.80	.80
10	.80	./9	.79	.79	./8	./8	./8	./8	.//	.//
18	.//	.//	.70	.70	.70	.70	73	73	.73	.73
19	.72	.72	.72	.71	.71	.71	.71	.71	.70	.70
20	.70	.70	.69	.69	.69	.69	.69	.68	.68	.68
21	.68	.68	.67	.67	.67	.67	.67	.66	.66	.66
22	.66	.66	.65	.65	.65	.65	.65	.64	.64	.64
23	.64	.64	.63	.63	.63	.63	.63	.63	.62	.62
24	.62	.62	.62	.61	.61	.61	.61	.61	.60	.60
26	.58	.58	.58	.58	.58	.58	.57	.57	.57	.57
27	.57	.57	.57	.57	.56	.56	.56	.56	.56	.56
28	.55	.55	.55	.55	.55	.54	.54	.54	.54	.54
29	.54	.54	.53	.53	.53	.53	.53	.53	.53	.52
30	.52	.52	.52	.52	.52	.52	.51	.51	.51	.51
31	.51	.51	.51	.50	.50	.50	.50	.50	.50	.50
32	.49	.49	.49	49	48	.49	.45	.49	.40	.40
34	.47	.40	.40	.46	.46	.46	.46	.46	.46	.46
35	.46	.45	.45	.45	.45	.45	.45	.45	.45	.44
36	.44	.44	.44	.44	.44	.44	.44	.44	.43	.43
37	.43	.43	.43	.43	.43	.43	.42	.42	.42	.42
38	.42	.42	.42	.42	.42	.41	.41	.41	.41	.41
40	40	40	40	.41	.40	.40	.40	.40	.40	.39
41	.39	.39	.39	.38	.38	.38	.38	.38	.38	.38
42	.38	.38	.38	.37	.37	.37	.37	.37	.37	.37
43	.37	.37	.37	.36	.36	.36	.36	.36	.36	.36
44	.36	.36	.35	.35	.35	.35	.35	.35	.35	.35
45	.35	.35	.34	.34	.34	.34	.34	.34	.34	.34
40	.34	.34	.33	.33	.33	.33	.33	.33	.33	.33
48	.32	.32	.32	.32	.32	.31	.31	.31	.31	.31
49	.31	.31	.31	.31	.31	.31	.30	.30	.30	.30
50	.30	.30	.30	.30	.30	.30	.29	.29	.29	.29
	0	.1	.2	.3	.4	.5	.6	.7	.8	.9

Locate the density reading in the table. The whole number of the extreme left plus the decimal number at the top or bottom of the column in which the reading is located is the percent transmission of the density. For example, the percent transmission of a density of

DENSITY-TRANSMITTANCE TABLE

DENSITY

TRANS. (%)	0	.1	.2	.3	.4	.5	.6	.7	.8	.9
51	.29	.29	.29	.29	.29	.29	.29	.29	.29	.28
52	.28	.28	.28	.28	.28	.28	.28	.28	.28	.28
53	.28	.28	.27	.27	.27	.27	.27	.27	.27	.27
54	.27	.27	.27	.27	.26	.26	.26	.26	.20	.20
55	.26	.26	.26	.26	.20	.25	.25	.25	.25	.25
50	.25	.25	.25	.25	.25	.25	.25	.25	.25	.24
58	.24	24	24	23	.24	23	23	23	.23	.23
50	.24	23	23	23	23	23	.22	.22	.22	.22
60	.22	.22	.22	.22	.22	.22	.22	.22	.22	.22
61	.21	.21	.21	.21	.21	.21	.21	.21	.21	.21
62	.21	.21	.21	.21	.20	.20	.20	.20	.20	.20
63	.20	.20	.20	.20	.20	.20	.20	.20	.19	.19
64	.19	.19	.19	.19	.19	.19	.19	.20	.19	.19
65	.19	.19	.19	.19	.18	.18	.18	.18	.18	.18
66	.18	.18	.18	.18	.18	.18	.18	.18	.17	.17
67	.17	.17	.17	.17	.17	.17	.17	.17	.17	.17
68	.17	.17	.17	.17	.16	.16	.16	.16	.16	.16
69	.16	.16	.16	.16	.16	.16	.16	.16	.16	.10
70	.15	.15	.15	.15	.15	.15	.15	.15	.15	.15
71	.15	.15	.15	.15	.15	.15	14	14	14	14
72	14	14	14	13	13	13	13	13	13	13
74	13	13	13	13	13	.13	.13	13	.13	.13
75	.12	.12	.12	.12	.12	.12	.12	.12	.12	.12
76	.12	.12	.12	.12	.12	.12	.12	.11	.11	.11
77	.11	.11	.11	.11	.11	.11	.11	.11	.11	.11
78	.11	.11	.11	.11	.11	.10	.10	.10	.10	.10
79	.10	.10	.10	.10	.10	.10	.10	.10	.10	.10
80	.10	.10	.10	.10	.09	.09	.09	.09	.09	.09
81	.09	.09	.09	.09	.09	.09	.09	.09	.09	.09
82	.09	.09	.08	.08	.08	.08	.08	.08	.08	.08
83	.08	.08	.08	.08	.08	.08	.08	.08	.08	.08
84	.08	.07	.07	.07	.07	.07	.07	.07	.07	.07
85	.07	.07	.07	.07	.07	.07	.07	.07	.07	.07
87	.07	.06	.06	.06	.06	.00	.00	.00	.00	.00
88	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
89	.00	.05	.05	.05	.05	.05	.05	.05	.05	.05
90	.05	.04	.04	.04	.04	.04	.04	.04	.04	.04
91	.04	.04	.04	.04	.04	.04	.04	.04	.04	.04
92	.04	.04	.04	.03	.03	.03	.03	.03	.03	.03
93	.03	.03	.03	.03	.03	.03	.03	.03	.03	.03
94	.03	.03	.03	.03	.02	.02	.02	.02	.02	.02
95	.02	.02	.02	.02	.02	.02	.02	.02	.02	.02
96	.02	.02	.02	.02	.02	.02	.01	.01	.01	.01
97	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01
98	.01	.01	.01	.01	.01	.01	.01	.01	.01	.00
99	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
100	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00

1.29 is 5.1 percent. For a density that appears more than once in the table, use the middle density number. For example, the percent transmission of the density .44, which appears 9 times, is 36.3; the percent transmission of the density .32 is either 47.8 or 47.9.

EASTMAN KODAK COMPANY · ROCHESTER, N.Y. 14650

KODAK WRATTEN Filters KODAK Publication No. B-3

2-65 Major Revision L-GLP-BX Printed in the United States Of America